

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-UDFN Exposed Pad
Supplier Device Package	8-UDFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1571t-i-rf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC12(L)F1571/2 devices are described within this data sheet. The block diagram of these devices is shown in Figure 1-1, the available peripherals are shown in Table 1-1 and the pinout descriptions are shown in Table 1-2.

TABLE 1-1:	DEVICE PERIPHERAL
	SUMMARY

Peripheral		PIC12(L)F1571	PIC12(L)F1572			
Analog-to-Digital Converter (A	(ADC) •					
Complementary Wave Generation (CWG)	ator	•	•			
Digital-to-Analog Converter (I	DAC)	•	•			
Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSAF		•				
Fixed Voltage Reference (FV	R)	٠	•			
Temperature Indicator		٠	٠			
Comparators						
	C1	•	•			
PWM Modules						
	PWM1	•	•			
	PWM2	•	•			
	PWM3	•	•			
Timers						
	Timer0	•	٠			
	Timer1	•	٠			
	Timer2	•	•			

1.1 Register and Bit Naming Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- · Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction, COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore, plus the name of the register in which the bit resides, to avoid naming contentions.

2.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

FIGURE 2-1:	CORE BLOCK DIAGRAM

- Automatic Interrupt Context Saving
- 16-Level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 Core Registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of Common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses: x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-9.

TABLE 3-2: CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	0									•	
00Ch	PORTA	_					RA<5:0>			xx xxxx	xx xxxx
00Dh	_	Unimpleme	nted							_	_
00Eh	_	Unimpleme	nted							_	_
00Fh	_	Unimpleme	nted							_	_
010h	_	Unimpleme	nted							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	_	_	TMR2IF	TMR1IF	000000	000000
012h	PIR2	_		C1IF	_	_	_	_	_	0	0
013h	PIR3	_	PWM3IF	PWM2IF	PWM1IF	_	_	_	_	-000	-000
014h	_	Unimpleme	nted	I						_	_
015h	TMR0	Holding Rea	aister for the	8-Bit Timer0	Count					XXXX XXXX	uuuu uuuu
016h	TMR1L	Holding Red	aister for the	Least Signific	ant Byte of th	e 16-Bit TMR	1 Count			XXXX XXXX	uuuu uuuu
017h	TMR1H	Holding Red	aister for the	Most Significa	ant Byte of the	16-Bit TMR1	Count			XXXX XXXX	uuuu uuuu
018h	T1CON	TMR10	S<1.0>	T1CKF	PS<1:0>	_	TISYNC	_	TMR10N	0000 -0-0	1111111 -11-11
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Mod	lule Register	l		l	L			0000 0000	0000 0000
01Bh	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
01Ch	T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1.0>	-000 0000	-000 0000
01Dh	_	Unimpleme	nted							_	_
01Eh		Unimpleme	nted							_	_
01Eh		Unimpleme	nted							_	_
Bank	1	ermpleme	inou								
08Ch	TRISA	_		TRIS	A<5:4>	(2)		TRISA<2:0>		11 1111	11 1111
08Dh	_	Unimpleme	nted							_	_
08Eh	_	Unimpleme	nted							_	_
08Fh	_	Unimpleme	nted							_	_
090h		Unimpleme	nted							_	_
091h	PIE1	TMR1GIE	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	_	_	TMR2IE	TMR1IE	000000	000000
092h	PIE2	_	_	C1IE	_	_	_	_	_	0	0
093h	PIE3	_	PWM3IE	PWM2IE	PWM1IE	_	_	_	_	-000	-000
094h		Unimpleme	nted			I	<u> </u>				_
095h	OPTION REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h		STKOVE	STKLINE			RMCL R	RI		BOR	00-1 11gg	
097h	WDTCON	-			IWDI	WDTPS<4	·0>	TOR	SWDTEN	01 0110	<u>qq</u> <u>q</u> <u>qq</u> uu
09/11 098b	OSCTUNE					т Т	UN<5:0>		SWDIEN	01 0110	00_0000
000h				IRCE	<3.0>	1		202	<1.0>	0011 1-00	0011 1-00
09311	OSCISTAT		DUR			HEIOEI	MEIOER		HEIDES	-000 0000	-0011 1-00
00Ph					THOIR			LIUIK	111013	-040 0400	444 4449
000Dh			Register Lu	nh						XXXX	
09011		ADC RESUI		JII	0110 -11 0			00/001/0			
09Dh	ADCON0	-		4000.07	CHS<4:0>	•		GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>		—	—	ADPRE	±⊢<1:0>	000000	000000
09Fh	ADCON2	1	TRIGS	EL<3:0>				—	—	0000	0000

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

TABLE 3-10:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	27										
D8Ch	—	Unimpleme	nted							—	—
D8Dh	—	Unimpleme	nted							_	_
D8Eh	PWMEN	_	_	_	_	_	PWM3EN_A	PWM2EN_A	PWM1EN_A	000	000
D8Fh	PWMLD	_	_	_	_	_	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	000	000
D90h	PWMOUT	_	_	_	_	_	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	000	000
D91h	PWM1PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
D92h	PWM1PHH				ł	PH<15:8>				XXXX XXXX	uuuu uuuu
D93h	PWM1DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
D94h	PWM1DCH				[DC<15:8>				XXXX XXXX	uuuu uuuu
D95h	PWM1PRL					PR<7:0>				XXXX XXXX	uuuu uuuu
D96h	PWM1PRH				I	PR<15:8>				XXXX XXXX	uuuu uuuu
D97h	PWM10FL					OF<7:0>				XXXX XXXX	uuuu uuuu
D98h	PWM10FH				(OF<15:8>				XXXX XXXX	uuuu uuuu
D99h	PWM1TMRL				٦	FMR<7:0>				XXXX XXXX	uuuu uuuu
D9Ah	PWM1TMRH				Т	MR<15:8>				XXXX XXXX	uuuu uuuu
D9Bh	PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	PWM1N	10DE<1:0>	_	_	0000 00	0000 00
D9Ch	PWM1INTE	_	_	_	_	PWM10FIE	PWM1PHIE	PWM1DCIE	PWM1PRIE	000	000
D9Dh	PWM1INTF	_	_	_	_	PWM10FIF	PWM1PHIF	PWM1DCIF	PWM1PRIF	000	000
D9Eh	PWM1CLKCON	_	F	PWM1PS<2:0)>	_	_	PWM10	CS<1:0>	-000 -000	-00000
D9Fh	PWM1LDCON	PWM1LDA	PWM1LDT	_	_	_	_	PWM1L	DS<1:0>	00000	0000
DA0h	PWM10FCON	_	PWM10	FM<1:0>	PWM10F0	_	_	PWM10	FS<1:0>	-000 -000	-00000
DA1h	PWM2PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
DA2h	PWM2PHH				I	PH<15:8>				XXXX XXXX	uuuu uuuu
DA3h	PWM2DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
DA4h	PWM2DCH				[DC<15:8>				XXXX XXXX	uuuu uuuu
DA5h	PWM2PRL					PR<7:0>				XXXX XXXX	uuuu uuuu
DA6h	PWM2PRH				I	PR<15:8>				XXXX XXXX	uuuu uuuu
DA7h	PWM2OFL					OF<7:0>				XXXX XXXX	uuuu uuuu
DA8h	PWM2OFH				(OF<15:8>				XXXX XXXX	uuuu uuuu
DA9h	PWM2TMRL				٦	ΓMR<7:0>				XXXX XXXX	uuuu uuuu
DAAh	PWM2TMRH				Т	MR<15:8>				XXXX XXXX	uuuu uuuu
DABh	PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	PWM2M	10DE<1:0>	_	—	0000 00	0000 00
DACh	PWM2INTE	_	_	_	_	PWM2OFIE	PWM2PHIE	PWM2DCIE	PWM2PRIE	000	000
DADh	PWM2INTF	_	_	_	_	PWM2OFIF	PWM2PHIF	PWM2DCIF	PWM2PRIF	000	000
DAEh	PWM2CLKCON	—	F	PWM2PS<2:0)>	_	—	PWM20	CS<1:0>	-000 -000	-00000
DAFh	PWM2LDCON	PWM2LDA	PWM2LDT	—	_	_	_	PWM2L	DS<1:0>	00000	0000

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

4.2 **Register Definitions: Configuration Words**

U-1 U-1 R/P-1 **R/P-1** U-1 R/P-1 **CLKOUTEN** BOREN<1:0>(1) bit 13 bit 8 R/P-1 R/P-1 R/P-1 R/P-1 U-1 R/P-1 **R/P-1** R/P-1 $\overline{CP}^{(2)}$ MCLRE PWRTF⁽¹⁾ WDTE<1:0> FOSC<1:0> bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '1' P = Programmable bit 0' = Bit is cleared n = Value when blank or after bulk erase '1' = Bit is set bit 13-12 Unimplemented: Read as '1' **CLKOUTEN:** Clock Out Enable bit bit 11 1 = Off – CLKOUT function is disabled; I/O or oscillator function on CLKOUT pin 0 = On - CLKOUT function is enabled on CLKOUT pin BOREN<1:0>: Brown-out Reset Enable bits(1) bit 10-9 11 = On- Brown-out Reset is enabled; the SBOREN bit is ignored - Brown-out Reset is enabled while running and disabled in Sleep; the SBOREN bit is ignored 10 = Sleep01 = SBODEN - Brown-out Reset is controlled by the SBOREN bit in the BORCON register - Brown-out Reset is disabled; the SBOREN bit is ignored 00 = OffUnimplemented: Read as '1' bit 8 CP: Flash Program Memory Code Protection bit⁽²⁾ bit 7 1 = Off - Code protection is off; program memory can be read and written 0 = On – Code protection is on; program memory cannot be read or written externally bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1 (On): This bit is ignored. MCLR/VPP pin function is MCLR; weak pull-up is enabled. If LVP bit = 0 (Off): $1 = On - \overline{MCLR}/VPP$ pin function is \overline{MCLR} ; weak pull-up is enabled 0 = Off - MCLR/VPP pin function is a digital input, MCLR is internally disabled; weak pull-up is under control of pin's WPU control bit **PWRTE:** Power-up Timer Enable bit⁽¹⁾ bit 5 1 = Off - PWRT is disabled 0 = On - PWRT is enabled bit 4-3 WDTE<1:0>: Watchdog Timer Enable bits - WDT is enabled; SWDTEN is ignored 11 = On10 = Sleep WDT is enabled while running and disabled in Sleep; SWDTEN is ignored 01 = SWDTEN – WDT is controlled by the SWDTEN bit in the WDTCON register WDT is disabled; SWDTEN is ignored 00 = Offbit 2 Unimplemented: Read as '1' bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = ECH - External Clock, High-Power mode: CLKI on CLKI - External Clock, Medium Power mode: CLKI on CLKI 10 **= ECM** - External Clock, Low-Power mode: CLKI on CLKI 01 = ECL 00 = INTOSC - I/O function on CLKI Note 1: Enabling Brown-out Reset does not automatically enable the Power-up Timer.

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

Once enabled, code-protect can only be disabled by bulk erasing the device. 2:

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications, while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of the following clock modes:

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. INTOSC Internal Oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low, medium and high-frequency clock sources, designated as LFINTOSC, MFINTOSC and HFINTOSC (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	—	—	TMR2IF	TMR1IF
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	nanged	x = Bit is unk	nown	U = Unimplei	mented bit, read	as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value	at POR and BO	R/Value at all c	other Resets
bit 7	TMR1GIF: T	mer1 Gate Inte	errupt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 6	ADIF: ADC I	nterrupt Flag bi	t				
	1 = Interrupt	is pending					
				`			
DIT 5		I Receive Intel	rupt Flag bit.	/			
	$\perp = Interrupt$	is penaing					
bit 4	TXIF: USAR	T Transmit Inte	rrupt Flag bit ⁽¹)			
bit i	1 = Interrupt	is pending	in up in log bit				
	0 = Interrupt	is not pending					
bit 3-2	Unimplemer	nted: Read as '	0'				
bit 1	TMR2IF: Tim	er2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 0	TMR1IF: Tim	er1 Overflow I	nterrupt Flag b	it			
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
Note 1: PIC	C12(L)F1572 or	nly.					
		2					

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit, GIE, of the INTCON
	register. User software should ensure the
	appropriate interrupt flag bits are clear prior
	to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS<1:0>		55
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	66
STATUS	—	_	_	TO	PD	Z	DC	С	19
WDTCON	—	—		١	WDTPS<4:0	>		SWDTEN	89

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	—	—	—	CLKOUTEN	BOREI	BOREN<1:0>		42
	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

*	* This code block will read 1 word of program								
*	memory at the memory address:								
	PROG_ADDR_HI : PROG_ADDR_LO								
*	data will be returned in the variables;								
*	PROG_DATA_HI, PROG_DATA_LO								
	BANKSEL	PMADRL	;	Select Bank for PMCON registers					
	MOVLW	PROG_ADDR_LO	;						
	MOVWF	PMADRL	;	Store LSB of address					
	MOVLW	PROG_ADDR_HI	;						
	MOVWF	PMADRH	;	Store MSB of address					
	BCF	PMCON1,CFGS	;	Do not select Configuration Space					
	BSF	PMCON1,RD	;	Initiate read					
	NOP		;	Ignored (Figure 10-2)					
	NOP ; Ignored (Figure 10-2)								
	MOVF	PMDATL,W	;	Get LSB of word					
	MOVWF	PROG_DATA_LO	;	Store in user location					
	MOVF	PMDATH,W	;	Get MSB of word					
	MOVWF	PROG_DATA_HI	;	Store in user location					

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an erase row or program row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3: F

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

PIC12(L)F1571/2

NOTES:

NOTES:

18.2 Register Definitions: Option Register

REGISTER 18-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
bit 7	WPUEN: Wea	ak Pull-Up Ena	ble bit				
	1 = All weak p	oull-ups are dis	abled (except	MCLR if it is e	nabled)		
	0 = Weak pul	l-ups are enabl	ed by individu	al WPUx latch	values		
bit 6	INTEDG: Inte	rrupt Edge Sel	ect bit				
	1 = Interrupt o	on rising edge	of INT pin				
h:4 F		on tailing edge	or in i pin				
DIT 5		neru Clock Sol	Irce Select bit				
	1 = 1 ransition 0 = 1 nternal in	struction cycle	clock (Fosc/4	1)			
hit 4		her0 Source Fo	lae Select bit	• /			
	1 = Incremen	t on high-to-lov	transition on	T0CKI pin			
	0 = Incremen	t on low-to-high	n transition on	T0CKI pin			
bit 3	PSA: Prescal	er Assignment	bit				
	1 = Prescaler	is not assigne	d to the Timer	0 module			
	0 = Prescaler	is assigned to	the Timer0 m	odule			
bit 2-0	PS<2:0>: Pre	scaler Rate Se	elect bits				
	Bit	Value Timer0	Rate				
	0	00 1:2					
	0	01 1:4					
	0	10 1:8	<u>^</u>				
	0		0 2				
	1	01 1·6	4				

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1:128

1 : 256

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGS	EL<3:0>				_	_	137
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		157
TMR0	Holding Register for the 8-bit Timer0 Count						155*		
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	113

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

110

111

Note 1: Unimplemented, read as '1'.

IGURE 19-5:	TIMERT GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM T <u>1GGO/</u> DONE	Cleared by Hardware on Generation Falling Edge of T1GVAL
t1g_in	Counting Enabled on Rising Edge of T1G
T1CKI	
T1GVAL	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by Software Cleared by Software Set by Hardware on Falling Edge of T1GVAL

FIGURE 25-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations						
OPCODE d f(FILE #)						
d = 0 for destination W d = 1 for destination f f = 7-bit file register address						
Bit-oriented file register operations						
OPCODE b (BIT #) f (FILE #)						
b = 3-bit bit address f = 7-bit file register address						
Literal and control operations						
General						
13 8 / U						
k = 8-bit immediate value						
CALL and GOTO instructions only						
13 11 10 0						
OPCODE k (literal)						
k = 11-bit immediate value						
MOVL₽ instruction only 13 7 6 0						
OPCODE k (literal)						
k = 7-bit immediate value						
MOVLB instruction only						
OPCODE k (literal)						
k = 5-bit immediate value						
BRA instruction only						
OPCODE k (literal)						
k = 0 bit immediate value						
FSR Offset instructions						
OPCODE n k (literal)						
n = appropriate FSR k = 6-bit immediate value						
FSR Increment instructions 13 3 2 1 0						
OPCODE n m (mode)						
n = appropriate FSR m = 2-bit mode value						
OPCODE only 13 0						
OPCODE						

Standard Operating Conditions (unless otherwise stated)								
Param. No.	^{1.} Sym. Characteristic		Min.	Тур†	Max.	Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP Pin	8.0		9.0	V	(Note 2)	
D111	IDDP	Supply Current during Programming	_	_	10	mA		
D112	VBE	VDD for Bulk Erase	2.7	_	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA		
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA		
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)	
D122	VPRW	VDD for Read/Write	VDDMIN		VDDMAX	V		
D123	Tiw	Self-Timed Write Cycle Time	—	2	2.5	ms		
D124	TRETD	Characteristic Retention	_	40	—	Year	Provided no other specifications are violated	
D125	EHEFC	High-Endurance Flash Cell	100K			E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses	

TABLE 26-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and block erase.

2: Required only if single-supply programming is disabled.

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ALTERNATE LEAD DESIGN

	INCHES					
Dimension	MIN	NOM	MAX			
Number of Pins	Ν		8			
Pitch	е	.100 BSC				
Top to Seating Plane	Α	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.348	.365	.400		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-018D Sheet 2 of 2

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			1.60	
Optional Center Pad Length	Y2			2.40	
Contact Pad Spacing	С		2.90		
Contact Pad Width (X8)	X1			0.35	
Contact Pad Length (X8)	Y1			0.85	
Contact Pad to Contact Pad (X6)	G1	0.20			
Contact Pad to Center Pad (X8)	G2	0.30			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2254A