

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1572-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-9 can be addressed from any bank.

TABLE 3-9: CORE FUNCTION REGISTERS SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets	
Bank	Bank 0-31											
x00h or x80h	INDF0		this location ical register)		nts of FSR0H	/FSR0L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu	
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu	
x02h or x82h	PCL	Program Co	ounter (PC) I	Least Signifi	cant Byte					0000 0000	0000 0000	
x03h or x83h	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu	
x04h or x84h	FSR0L	Indirect Dat	ndirect Data Memory Address 0 Low Pointer							0000 0000	uuuu uuuu	
x05h or x85h	FSR0H	Indirect Dat	ndirect Data Memory Address 0 High Pointer							0000 0000	0000 0000	
x06h or x86h	FSR1L	Indirect Dat	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu	
x07h or x87h	FSR1H	Indirect Dat	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000	
x08h or x88h	BSR	_	_				BSR<4:0>			0 0000	0 0000	
x09h or x89h	WREG	Working Re	Working Register							0000 0000	uuuu uuuu	
x0Ahor x8Ah	PCLATH	_	Write Buffer for the Upper 7 bits of the Program Counter							-000 0000	-000 0000	
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented, read as '0'; r = reserved. Shaded locations are unimplemented, read as '0'.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications, while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of the following clock modes:

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. INTOSC Internal Oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low, medium and high-frequency clock sources, designated as LFINTOSC, MFINTOSC and HFINTOSC (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS	<1:0>	55
PCON	STKOVF	STKUNF		RWDT	RMCLR	RI	POR	BOR	66
STATUS	_	_	_	TO	PD	Z	DC	С	19
WDTCON	_	_	WDTPS<4:0>					SWDTEN	89

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_					BOREN<1:0>			42
	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		_	FOSC	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
-	_	LATA<	:5:4> ⁽¹⁾			LATA<2:0> ⁽¹⁾			
bit 7			•			bit C			
Legend:									
R = Readabl	e bit	W = Writable	bit						
u = Bit is und	changed	x = Bit is unk	nown	U = Unimplemented bit, read as '0'					
'1' = Bit is set '0' = Bit is cleared			ared	-n/n = Value at POR and BOR/Value at all other Resets					
bit 7-6	Unimpleme	nted: Read as '	0'						
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾								

REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER

bit 0-4		Output Later value bi
bit 3	Unimplemented: Re	ad as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1 R/W-1/1 R/W-1/1		
—	—	—	ANSA4	—	ANSA<2:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-5	Unimplemented: Read as '0'
bit 4	ANSA4: Analog Select Between Analog or Digital Function on RA4 Pins (respectively) bit
	 1 = Analog input; pin is assigned as analog input, digital input buffer is disabled⁽¹⁾ 0 = Digital I/O; pin is assigned to port or digital special function
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select Between Analog or Digital Function on RA<2:0> pins (respectively) bits 1 = Analog input; pin is assigned as analog input, digital input buffer is disabled⁽¹⁾ 0 = Digital I/O; pin is assigned to port or digital special function
Note 1:	When setting a pin to an analog input, the corresponding TRISx bit must be set to Input mode in order to

'9 allow external control of the voltage on the pin.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from the PORTA register are the return of actual I/O pin values.

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

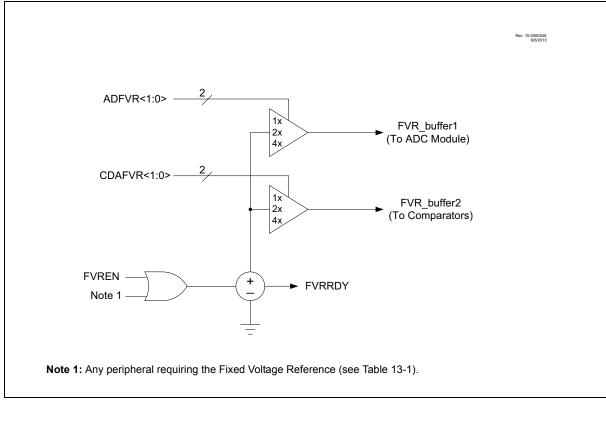
- · ADC input channel
- · Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.


The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 27-21.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR is always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR is disabled in Sleep mode, BOR Fast Start is enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start is enabled.
LDO	All PIC12F1571/2 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS00001333) for more details regarding the calibration process.

14.1 Circuit Operation

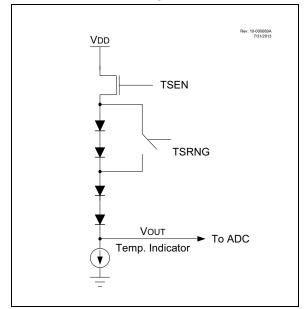
Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4 VT

Low Range: VOUT = VDD - 2 VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low-voltage operation.

FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM

14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum $\mathsf{V}\mathsf{D}\mathsf{D}$ vs. range setting.

TABLE 14-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 15.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

14.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

20.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see **Section 20.2 "Timer2 Interrupt"**).

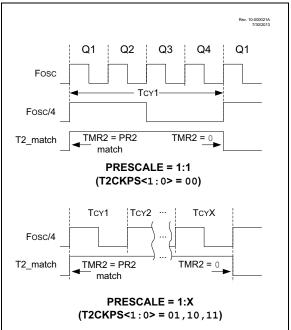
The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · A write to the TMR2 register
- · A write to the T2CON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- · Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

20.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.


A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

20.3 Timer2 Output

The output of TMR2 is T2_match.

The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

20.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

21.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character, the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two-character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

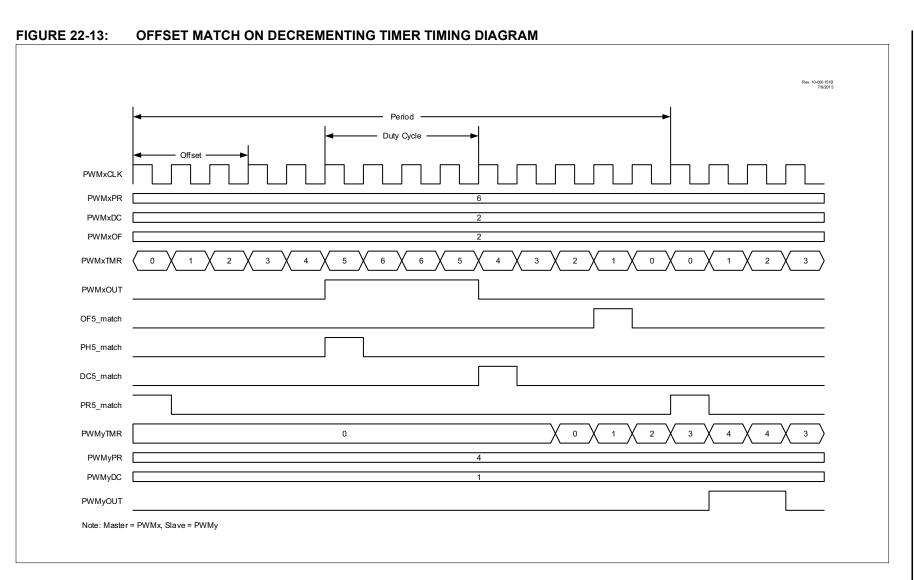
Note:	If the RX/DT function is on an analog pin,
	the corresponding ANSELx bit must be
	cleared for the receiver to function.

21.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSELx bit must be cleared.

21.5.1.7 Receive Overrun Error


The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens, the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear, then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set, then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

21.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9 bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

21.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SPBRGH/SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSELx bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 4. Ensure bits, CREN and SREN, are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register, and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit, RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit, RCIF, will be set when reception of a character is complete. An interrupt will be generated if the enable bit, RCIE, was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

PIC12(L)F1571/2

REGISTER 22-9: PWMxDCH: PWMx DUTY CYCLE COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit				
u = Bit is uncha	anged	x = Bit is unkn	nown	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7-0 **DC<15:8>**: PWMx Duty Cycle High bits Upper eight bits of PWM duty cycle count.

REGISTER 22-10: PWMxDCL: PWMx DUTY CYCLE COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | DC< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

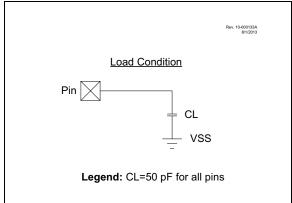
bit 7-0 DC<7:0>: PWMx Duty Cycle Low bits Lower eight bits of PWM duty cycle count.

TABLE 22-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PWM
--------------------	--

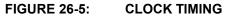
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN	IRCF<3:0> — SCS<1:0>			<1:0>	55			
PIE3	_	PWM3IE	PWM2IE	PWM1IE	_	_	_		77
PIR3	_	PWM3IF	PWM2IF	PWM1IF		_		_	80
PWMEN	_	_	—	_		PWM3EN_A	PWM2EN_A	PWM1EN_A	227
PWMLD	_	_	_	_		PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	227
PWMOUT	_	_	_	_	_	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	227
PWM1PHL				P	H<7:0>			•	222
PWM1PHH				Pł					222
PWM1DCL				D	C<7:0>				223
PWM1DCH				D	C<15:8>				223
PWM1PRH				Р	R<7:0>				224
PWM1PRL				Pf	R<15:8>				224
PWM10FH					F<7:0>				225
PWM10FL					F<15:8>				225
PWM1TMRH					/R<7:0>				226
PWM1TMRL					R<15:8>				226
PWM1CON	EN	OE	OUT	POL		E<1:0>	_	_	216
PWM1INTE		_	_	_	OFIE	PHIE	DCIE	PRIE	217
PWM1INTF	_				OFIF	PHIF	DCIF	PRIF	218
PWM1CLKCON			PS<2:0>					<1:0>	210
PWM1LDCON	LDA	LDT	10.2.0-						219
PWM10FCON	LDA	LDA LDT LDS<1:0> OFM<1:0> OFO OFS<1:0>						220	
PWM10FCON PWM2PHL	_	OTW	<1.02		 H<7:0>		013	<1.02	221
PWM2PHL PWM2PHH									222
PWM2PHH PWM2DCL	PH<15:8> DC<7:0>						222		
PWM2DCL PWM2DCH					C<15:8>				223
PWM2DCH PWM2PRL					R<7:0>				223
PWM2PRL					R<1.02 R<15:82				224
					F<7:0>				
PWM2OFL									225
PWM2OFH					F<15:8>				225
PWM2TMRL					/R<7:0>				226
PWM2TMRH	EN	05	OUT	-	R<15:8>	E :4 0:			226
PWM2CON	EN	OE	OUT	POL		E<1:0>	-	-	216
PWM2INTE		_	_	_	OFIE	PHIE	DCIE	PRIE	217
PWM2INTF	_	_		—	OFIF	PHIF	DCIF	PRIF	218
PWM2CLKCON	-	LDT	PS<2:0>					<1:0>	219
PWM2LDCON	LDA	LDT	-	-				<1:0>	220
PWM2OFCON		OFM	<1:0>	OFO	—	—	OFS	<1:0>	221
PWM3PHL	PH<7:0>						222		
PWM3PHH	PH<15:8>						222		
PWM3DCL	DC<7:0>						223		
PWM3DCH	DC<15:8>						223		
PWM3PRL					R<7:0>				224
PWM3PRH					R<15:8>				224
PWM3OFL					F<7:0>				225
PWM30FH					F<15:8>				225
PWM3TMRL				TN	/IR<7:0>				226
PWM3TMRH				TM	R<15:8>				226
PWM3CON	EN	OE	OUT	POL	MODI	E<1:0>	—	—	216

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the PWM.

26.4 AC Characteristics


Timing Parameter Symbology has been created with one of the following formats:

1. TppS2ppS


2. TppS

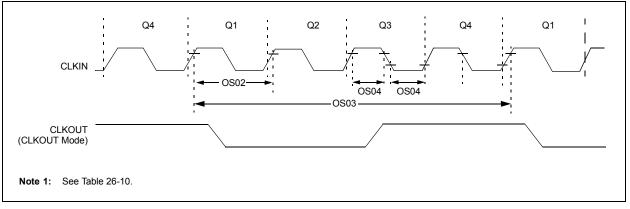
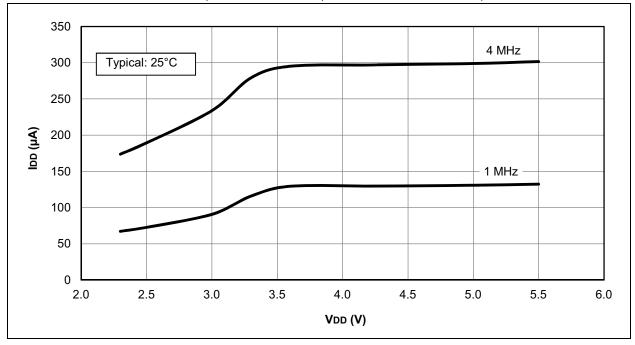

<u>2. 1pp0</u>			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	CLKIN
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	SC	SCKx
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:	<u>.</u>	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

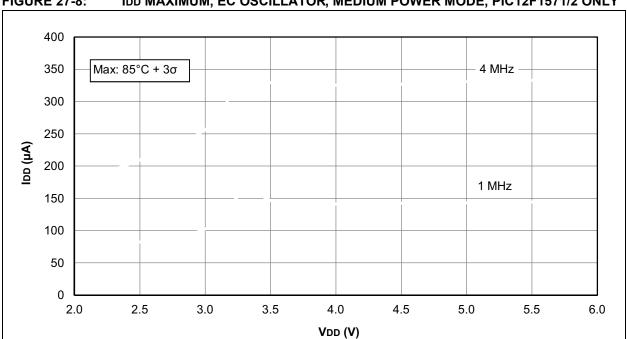
FIGURE 26-4: LOAD CONDITIONS

PIC12(L)F1571/2

TABLE 26-7: CLOCK OSCILLATOR TIMING REQUIREMENTS


Stanuaru							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	×	ns	External Clock (EC)
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc

Standard Operating Conditions (unless otherwise stated)


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 27-7: IDD TYPICAL, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY

FIGURE 27-8: IDD MAXIMUM, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

28.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

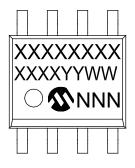
Feature-Rich Editor:

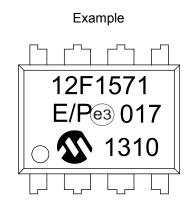
- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

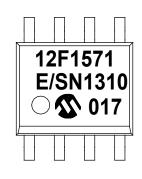
- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

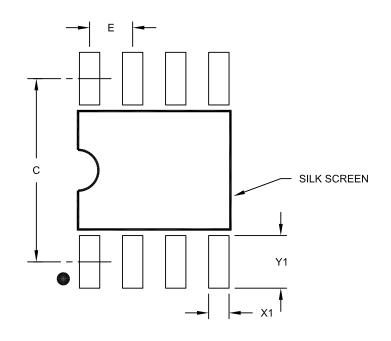

- · Local file history feature
- Built-in support for Bugzilla issue tracker


29.0 PACKAGING INFORMATION

29.1 Package Marking Information


8-Lead PDIP (300 mil)

8-Lead SOIC (3.90 mm)


Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	XX XX XX XX	Examples:
Device	Tape and Reel Temperature Package Pat Option Range	a) PIC12LF1571T - I/SO Tape and Reel, Industrial temperature, SOIC package
Device:	PIC12LF1571, PIC12F1571 PIC12LF1572, PIC12F1572	 b) PIC12F1572 - I/P Industrial temperature, PDIP package c) PIC12F1571-E/MF
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	Extended Temperature, DFN package
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: Tape and Reel identifier only appears in the
Package: ⁽²⁾	MF = Micro Lead Frame (DFN) 3x3x0.9 mm MS = MSOP P = Plastic DIP SN = SOIC RF = Micro Lead Frame (UDFN) 3x3x0.5 mm	catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	2: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

NOTES: