

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1572-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 Core Registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of Common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses: x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-9.

TABLE 3-2: CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · The arithmetic status of the ALU
- The Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, refer to **Section 25.0** "Instruction Set Summary").

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾	
bit 7	÷				·		bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'		
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is s	et	'0' = Bit is clea	ared	q = Value de	pends on condit	ion		
bit 7-5	Unimplemer	nted: Read as ')'					
bit 4	TO: Time-out	t bit						
	1 = After pow	ver-up, CLRWDT	instruction or	SLEEP instruc	tion			
	0 = A WDT ti	me-out occurre	3					
bit 3	PD: Power-D	own bit						
	1 = After pow 0 = By execu	ver-down or by t ition of the SLEE	he CLRWDT in P instruction	nstruction				
bit 2	Z: Zero bit							
	1 = The resu	It of an arithmet	ic or logic op	eration is zero	ero			
hit 1	DC: Digit Ca	rry/Digit Borrow	hit (ADDWF Z		SUBWE instructi	ons)(1)		
bit i	1 = A carry-carr	out from the 4th	low-order bit	of the result or	curred	01137		
	0 = No carry-out from the 4th low-order bit of the result							
bit 0	C: Carry/Bor	row bit ⁽¹⁾ (ADDW	F, ADDLW, SU	BLW, SUBWF ir	structions) ⁽¹⁾			
	1 = A carry-out from the Most Significant bit of the result occurred							
	0 = No carry-	out from the Mo	ost Significan	t bit of the resu	It occurred			
Note 1:	For Borrow, the po	plarity is reverse	d. A subtract	tion is executed	by adding the	two's complem	ent of the	
5	second operand.	or rotate (RRF, 2	RLF) instructi	ons, this bit is l	oaded with eithe	er the high-orde	r or low-order	

REGISTER 3-1: STATUS: STATUS REGISTER

© 2013-2015 Microchip Technology Inc.

bit of the source register.

PIC12(L)F1571/2

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

FIGURE 3-7: ACCESSING THE STACK EXAMPLE 3

6.2.1 BOR IS ALWAYS ON

When the BORENx bits of the Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BORENx bits of the Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BORENx bits of the Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 6-2: BROWN-OUT SITUATIONS

7.6 Register Definitions: Interrupt Control

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE ⁽¹⁾	PEIE ⁽²⁾	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽³⁾
bit 7							bit 0
Legend:							
R = Readat	ble bit	W = Writable	bit				
u = Bit is ur	nchanged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	as '0'	
'1' = Bit is s	et	'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7	GIE: Global Ir	nterrupt Enable	e bit ⁽¹⁾				
	1 = Enables a	all active interru	ipts				
	0 = Disables a	all interrupts					
DIT 6	PEIE: Periphe	eral Interrupt E					
	1 = Enables a 0 = Disables a	all peripheral ir	ierai interrupts	5			
bit 5	TMR0IE: Time	er0 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t	he Timer0 inter	rupt				
	0 = Disables f	the Timer0 inte	rrupt				
bit 4	INTE: INT Ex	ternal Interrupt	Enable bit				
	1 = Enables t	he INT externa	l interrupt				
h:4 0			al interrupt				
DIT 3	1 - Enchlos t	Ipt-On-Change	Enable bit				
	0 = Disables t	the Interrupt-O	n-Change				
bit 2	TMR0IF: Time	er0 Overflow Ir	nterrupt Flag b	oit			
	1 = TMR0 reg	jister has overf	lowed				
	0 = TMR0 reg	jister has not o	verflow				
bit 1	INTF: INT Ext	ternal Interrupt	Flag bit				
	1 = The INT e	external interru	pt occurred				
hit 0			Interrunt Elec	JI v hit(3)			
	1 = When at l	east one of the		Change nins c	hanged state		
	0 = None of the	ne Interrupt-Or	-Change pins	have changed	l state		
Note 1:	Interrupt flag bits a	re set when ar	n interrupt con	dition occurs. r	equire and less of the	e state of its co	rrespondina

enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

- 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.
- **3:** The IOCIF Flag bit is read-only and cleared when all the Interrupt-On-Change flags in the IOCxF registers have been cleared by software.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-2 Unimplemented: Read as '0'

bit 1

Unimplemented. Read as 0

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up.
- 0 = Normal power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up.

bit 0 **Reserved:** Read as '1', maintain this bit set

Note 1: PIC12F1571/2 only.

2: See Section 26.0 "Electrical Specifications"

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	122
IOCAN		—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	121
IOCAP		_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	121
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	—	—	TMR2IE	TMR1IE	75
PIE2	_	—	C1IE	—	—	—	_	—	76
PIE3	_	PWM3IE	PWM2IE	PWM1IE	—	—	_	—	77
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	—	—	TMR2IF	TMR1IF	78
PIR2	_	—	C1IF	—	—	—	_	—	79
PIR3		PWM3IF	PWM2IF	PWM1IF	_	_		_	80
STATUS		_	_	TO	PD	Z	DC	С	19
WDTCON	_	_		V	SWDTEN	89			

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: PIC12(L)F1572 only.

Register Definitions: Watchdog Control 9.6

REGISTER 9	-1: WDIC				REGISTER		B 844 6/5
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
				WDTPS<4:0>	•		SWDIEN
Dit /							Dit U
l egend:							
R = Readable	bit	W = Writable	hit				
u = Reduuble	anged	x = Rit is unkr	nown	U = Unimplem	nented bit read	1 as '0'	
'1' = Bit is set		0' = Bit is clear	ared	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0>	Watchdog Ti	mer Period S	elect bits ⁽¹⁾			
	<u>Bit Value = Pr</u>	rescale Rate					
	11111 = Re	served; results	in minimum i	nterval (1:32)			
	•						
	•						
	10011 = Re	served; results	in minimum i	nterval (1:32)			
	10010 = 1 :8	3388608 (2 ²³) (Interval 256s	nominal)			
	10001 = 1 :4	194304 (2 ²²) (Interval 128s	nominal)			
	10000 = 1:2	2097152 (2 ²¹) (Interval 64s r	iominal)			
	01111 = 1:1	048576 (2 ²⁰) (Interval 32s r	iominal)			
	01110 = 1.3 01101 = 1.2	24200 (2 ¹³) (II 9621 <i>44</i> (2 ¹⁸) (Ir	iterval 105 nc	ninal)			
	01101 = 1.2 01100 = 1.1	.02144 (2) (ll 31072 (2 ¹⁷) (lr	iterval 4s nor	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal) (Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)	,			
	01001 = 1:1	6384 (Interval	512 ms nomi	nal)			
	01000 = 1:8	192 (Interval 2	56 ms nomin	al)			
	00111 = 1:4	096 (Interval 1	28 ms nomin	al)			
	00110 = 1:2	048 (Interval 6	4 ms nomina 2 ma nomina	l)			
	00101 = 1.1	024 (Interval 16	ms nominal))			
	000100 = 1:3 00011 = 1:2	256 (Interval 8 r	ns nominal)				
	00010 = 1:1	28 (Interval 4 r	ns nominal)				
	00001 = 1:6	64 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for V	/atchdog Timer	bit		
	If WDTE<1:0	> = 1x:					
	I his bit is ign	ored.					
	It WDTE<1:0	> = 01:					
	$\perp = WDI ISt$	umed off					
	This bit is ign	<u>~ – 00.</u> ored					

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an erase row or program row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3: F

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR is always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR is disabled in Sleep mode, BOR Fast Start is enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start is enabled.
LDO	All PIC12F1571/2 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

18.2 Register Definitions: Option Register

REGISTER 18-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
bit 7	WPUEN: Wea	ak Pull-Up Ena	ble bit				
	1 = All weak p	oull-ups are dis	abled (except	MCLR if it is e	nabled)		
	0 = Weak pul	l-ups are enabl	ed by individu	al WPUx latch	values		
bit 6	INTEDG: Inte	errupt Edge Sel	ect bit				
	1 = Interrupt o	on rising edge	of INT pin				
h:4 C		on failing edge					
DIT 5		neru Clock Sol	Irce Select bit				
	\perp = transition 0 = Internal in	struction cycle	clock (Fosc/	1)			
hit 4		ner0 Source Ec	tae Select hit	•)			
	1 = Incremen	t on high-to-lov	v transition on	T0CKI pin			
	0 = Incremen	t on low-to-high	n transition on	T0CKI pin			
bit 3	PSA: Prescal	er Assignment	bit				
	1 = Prescaler	is not assigne	d to the Timer	0 module			
	0 = Prescaler	is assigned to	the Timer0 m	odule			
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits				
	Bit	Value Timer0	Rate				
	0	000 1:2					
	0	001 1:4					
	0		<u>^</u>				
	0		0 2				
	1	01 1.6	4				

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1 : 128 1 : 256

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGS	EL<3:0>			_	—	—	137
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		157
TMR0	Holding Register for the 8-bit Timer0 Count							155*	
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	113

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

110

111

Note 1: Unimplemented, read as '1'.

21.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U"), which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges, including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 21-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 21-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH/SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register, the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits, as shown in Table 21-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Detection will occur on the byte <u>following</u> the Break character (see Section 21.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - **3:** During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 21-6.	BRG COUNTER	CLOCK RATES
IADLL ZI-0.	DIG COUNTER	CLOCK NAILS

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, the SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 21-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	<u>χ</u> 0000h				<u> </u>		001Ch
RX Pin		Sta	rt Edge #1	Edge #2 bit 2 bit 3	Edge #3	Edge #4		Edge #5 top bit
BRG Clock	DINANNANNANNANNA		himm	nnnn	www	www	רנווווע	ANNIAN INNAAAAAA
ABDEN bit	Set by User —	, , , ,	1 1 1 1					— Auto Cleared
RCIDL		<u>.</u>	I I					
RCIF bit (Interrupt)		·	, , ,					
Read RCREG		 						
SPBRGL		 	XXh					1Ch
SPBRGH		•	XXh				X	00h

21.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by twelve '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 21-9 for the timing of the Break character sequence.

21.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

21.4.5 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when:

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the auto-wake-up feature described in **Section 21.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 23-1: SIMPLIFIED CWG BLOCK DIAGRAM

PIC12(L)F1571/2

23.12 Register Definitions: CWG Control

REGISTER 23-1: CWGxCON0: CWGx CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0				
GxEN	GxOEB	GxOEA	GxPOLB	GxPOLA	_	_	GxCS0				
bit 7	•				•	-	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit								
u = Bit is unch	anged	x = Bit is unkr	unknown U = Unimplemented bit, read as '0'								
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BOI	R/Value at all o	other Resets				
bit 7	GxEN: CWG	x Enable bit									
	1 = Module is	s enabled									
	0 = Module is	s disabled									
bit 6	GxOEB: CW	GxB Output En	able bit								
	1 = CWGxB	is available on	appropriate I/	O pin to I/O pin							
bit E											
DIL 5		ia available on		0 nin							
	1 = CWGXA 0 = CWGXA	is not available	on appropriate i/	te I/O pin							
bit 4	GxPOLB: CV	VGxB Output P	olarity bit								
	1 = Output is	inverted polar	itv								
	0 = Output is	normal polarit	y								
bit 3	GxPOLA: CV	VGxA Output F	olarity bit								
	1 = Output is	inverted polar	ity								
	0 = Output is	normal polarit	у								
bit 2-1	Unimplemen	ted: Read as '	0'								
bit 0	GxCS0: CWC	Gx Clock Sourc	e Select bit								
	1 = HFINTOS	SC									
	0 = Fosc										

TABLE 26-3:	POWER-DOWN CURRENTS (IPD) ^(1,2)
-------------	--

PIC12LF1571/2		Operating Conditions (unless otherwise stated) Low-Power Sleep Mode								
PIC12F15	71/2	Low-Power Sleep Mode, VREGPM = 1								
Param.	Device Characteristics	Min	Typt	Max.	Max.	Unite	Conditions			
No.	Device characteristics		1961	+85°C	+125°C	onno	Vdd	Note		
D022	Base IPD	—	0.020	0.6	2.6	μA	1.8	WDT, BOR and FVR disabled,		
		-	0.025	0.8	2.9	μA	3.0	all peripherals inactive, VREGPM = 1		
D022	Base IPD		0.2	0.9	2.8	μA	2.3	WDT, BOR and FVR disabled,		
		—	0.3	3.0	3.8	μA	3.0	all peripherals inactive,		
		—	0.4	3.6	4.5	μA	5.0	VREGPM = 1		
D022A	Base IPD	_	9	14	15	μA	2.3	WDT, BOR and FVR disabled,		
		—	11	19	21	μA	3.0	all peripherals inactive,		
		—	12	21	22	μA	5.0	VREGPM = 0		
D023		_	0.3	0.8	2.9	μA	1.8	WDT Current		
		—	0.5	1.1	3.5	μA	3.0			
D023		—	0.5	1.7	4.1	μA	2.3	WDT Current		
		_	0.6	1.9	4.4	μA	3.0			
		_	0.7	2.1	4.7	μA	5.0			
D023A		_	13	18	20	μA	1.8	FVR Current		
		—	22	28	29	μA	3.0			
D023A			16	24	25	μA	2.3	FVR Current		
		—	19	30	31	μA	3.0			
		—	20	33	35	μA	5.0			
D024		—	6.5	9	11	μA	3.0	BOR Current		
D024		—	7.0	10	11	μA	3.0	BOR Current		
		—	8.0	12	13	μA	5.0			
D24A		—	0.2	2	4	μA	3.0	LPBOR Current		
D24A		—	0.4	2	4	μA	3.0	LPBOR Current		
		—	0.5	3	5	μA	5.0			
D026		—	0.03	0.7	2.7	μA	1.8	ADC Current (Note 3),		
		—	0.04	0.8	3	μA	3.0	No conversion in progress		
D026		—	0.2	1.3	3.8	μA	2.3	ADC Current (Note 3),		
			0.3	1.4	3.9	μA	3.0	No conversion in progress		
		—	0.4	1.5	4	μA	5.0			
D026A*		—	250	—	—	μA	1.8	ADC Current (Note 3),		
		—	250	—	—	μA	3.0	Conversion in progress		
D026A*			280	—	—	μA	2.3	ADC Current (Note 3),		
			280	—	_	μA	3.0	Conversion in progress		
		_	280	_	_	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

TABLE 26-6: THERMAL CHARACTERISTICS

Param. No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	56.7	°C/W	8-pin DFN 3x3 mm package
			89.3	°C/W	8-pin PDIP package
			149.5	°C/W	8-pin SOIC package
			39.4	°C/W	8-pin UDFN 3x3 mm package
TH02	θJC	Thermal Resistance Junction to Case	9.0	°C/W	8-pin DFN 3x3 mm package
			43.1	°C/W	8-pin PDIP package
			39.9	°C/W	8-pin SOIC package
			40.3	°C/W	8-pin UDFN 3x3 mm package
TH03	Тјмах	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power		W	Pder = PDmax (Tj – Ta)/θja ⁽²⁾

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature; TJ = Junction Temperature.

TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2	—	—	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 prescaler used		
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	—	1024	—	Tosc			
33*	TPWRT	Power-up Timer Period	40	65	140	ms	PWRTE = 0		
34*	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS			
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0		
			2.35	2.45	2.58	V	BORV = 1 (PIC12F1571/2)		
			1.80	1.90	2.05	V	BORV = 1 (PIC12LF1571/2)		
36*	VHYST	Brown-out Reset Hysteresis	0	25	60	mV	$-40^{\circ}C \le TA \le +85^{\circ}C$		
37*	TBORDC	Brown-out Reset DC Response Time	1	16	35	μS	$VDD \leq VBOR$		
38	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

FIGURE 26-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

27.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented is **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at +25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean – 3σ) respectively, where σ is a standard deviation over each temperature range.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (10/2013)

Original release of this document.

Revision B (2/2014)

Updated PIC12(L)F1571/2 Family Types table Program Memory Flash heading (*words* to *K words*).

Revision C (8/2014)

Updated PWM chapter. Changed to Final data sheet. Updated IDD and IPD parameters in the Electrical Specification chapter. Added Characterization Graphs.

Added Section 1.1: Register and Bit Naming Conventions.

Updated Figures 5-3 and 15-5. Updated Tables 3-1, 3-7, and 3-10. Updated Section 15.2.5. Updated Equation 15-1.

Revision D (8/2015)

Updated Clocking Structure, Memory, Low-Power Features, Family Types table and Pin Diagram Table on cover pages.

Added Sections 3.2: High-Endurance Flash and 5.4: Clock Switching Before Sleep. Added Table 29-2 and 8-pin UDFN packaging.

Updated Examples 3-2 and 15-1.

Updated Figures 8-1, 21-1, 22-8 through 22-13 and 23-1.

Updated Registers 7-5, 8-1, 22-6 and 23-3.

Updated Sections 8.2.2, 15.2.6, 16.0, 21.0, 21.4.2, 22.3.3, 23.9.1.2, 23.11.1, 26.1 and 29.1.

Updated Tables 1, 3-3, 3-4, 3-10, 5-1, 16-1, 17-3, 22-2, 23-2, 26-6, 26-8 and 29-1.