

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1572t-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.5 Register Definitions: Oscillator Control

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF<3:0> — SCS<1:0>					
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set	set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Re						other Resets
bit 7	SPLLEN: So <u>If PLLEN in C</u> SPLLEN bit i <u>If PLLEN in C</u> 1 = 4x PLL I 0 = 4x PLL i	ftware PLL Ena Configuration W s ignored. 4x P Configuration W s enabled s disabled	able bit /ords = 1: 'LL is always e /ords = 0:	enabled (subjec	t to oscillator re	equirements).	
bit 6-3	IRCF<3:0>: 1111 = 16 M 1110 = 8 MH 1101 = 4 MH 1100 = 2 MH 1011 = 1 MH 1010 = 500 H 1001 = 250 H 1000 = 125 H 0111 = 500 H 0110 = 250 H 0110 = 250 H 0110 = 250 H 0101 = 125 H 0100 = 62.5 0011 = 31.25 0010 = 31.25 000x = 31 kH	Internal Oscilla Hz HF Iz or 32 MHz H Iz HF Iz HF (Hz HF ⁽¹⁾ (Hz HF ⁽¹⁾ (Hz HF ⁽¹⁾ (Hz MF (defaul (Hz MF (Hz MF kHz MF 5 kHz MF 5 kHz MF 1z LF	tor Frequency F (see Sectio t upon Reset)	Select bits n 5.2.2.1 "HFIN	ITOSC")		
bit 2	Unimplemer	nted: Read as '	0'				
bit 1-0	SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Timer1 oscillator 00 = Clock determined by FOSC<1:0> in Configuration Words						

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

Note 1: Duplicate frequency derived from HFINTOSC.

NOTES:

NOTES:

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkn	iown	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 PMDAT<7:0>: Read/Write Value for Least Significant bits of Program Memory bits

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			PMDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/Write Value for Most Significant bits of Program Memory bits

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Progra	am Memory	Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t				
S = Bit can only	be set	x = Bit is unkno	wn	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clear	ed	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	106
PMCON2	Program Memory Control Register 2							107	
PMADRL		PMADRL<7:0>							105
PMADRH	(1)	(1) PMADRH<6:0>							105
PMDATL	PMDATL<7:0>						104		
PMDATH	—	— — PMDATH<5:0>							104

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory. **Note 1:** Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	_	CLKOUTEN	BORE	N<1:0>	_	40
CONFIGI	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	42
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	12
CONFIGZ	7:0	—	—	—	—	—	—	WRT	<1:0>	43

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

REGISTER 15-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit								
u = Bit is unch	anged	x = Bit is unkn	own	U = Unimpler	mented bit, read	d as '0'		
'1' = Bit is set		'0' = Bit is clea	ired	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
bit 7	ADFM: ADC	Result Format S	Select bit					
	 1 = Right justified; six Most Significant bits of ADRESH are set to '0' when the conversion result is loaded 0 = Left justified; six Least Significant bits of ADRESL are set to '0' when the conversion result is loaded 							
bit 6-4	ADCS<2:0>:	ADC Conversion	on Clock Sele	ct bits				
	000 = Fosc/	/2						
	001 = Fosc/	/8						
	$0 \perp 0 = FOSC/$	32 (clock supplied f	rom an intern	al PC oscillator	·)			
	100 = FRC)			
	101 = Fosc/	/16						
	110 = Fosc/	/64						
	111 = FRC (clock supplied f	rom an interna	al RC oscillator	.)			
bit 3-2	Unimplemer	nted: Read as '0)'					
bit 1-0	ADPREF<1:	0>: ADC Positiv	e Voltage Ref	erence Configu	uration bits			
	00 = VRPOS is connected to VDD							
	01 = Reserv	ed		(1)				
	10 = VRPOS	is connected to	external VREF	+ pin'''				
	II - VRPUS	is connected to	Internal Fixed	vollage Relefe				

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 26.0 "Electrical Specifications"** for details.

19.1 Timer1 Operation

TABLE 19-1:

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 19-1 displays the Timer1 enable selections.

TIMER1 ENABLE

SELECTIONS							
TMR10N	TMR1GE	Timer1 Operation					
0	0	Off					
0	1	Off					
1	0	Always On					
1	1	Count Enabled					

19.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 19-2 displays the clock source selections.

19.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc, as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

19.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high, then Timer1 is enabled (TMR1ON = 1) when T1CKI is low

TABLE 19-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T1OSCEN ⁽¹⁾	Clock Source
11	x	LFINTOSC
10	x	External Clocking on T1CKI Pin
01	x	System Clock (Fosc)
00	x	Instruction Clock (Fosc/4)

Note 1: T1OSCEN is not available for these devices.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN		
bit 7	·						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit						
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, reac	l as '0'			
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit						
	Asynchronous	<u>s mode:</u> d timer everflev	und						
	1 = Auto-bauto	d timer did not	wea overflow						
	Synchronous	mode:							
	Don't care.								
bit 6	RCIDL: Rece	ive Idle Flag bi	it						
	Asynchronou	<u>s mode:</u>							
	1 = Receiver	is idle	ed and the re	ceiver is receiv	ina				
	Synchronous	mode.			ing				
	Don't care.	110000.							
bit 5	Unimplemen	Unimplemented: Read as '0'							
bit 4	SCKP: Synch	SCKP: Synchronous Clock Polarity Select bit							
	Asynchronou	<u>s mode:</u>							
	1 = Transmits	inverted data	to the TX/CK	pin VOK nin					
	0 = 1 ransmits	non-inverted	data to the TX	/CK pin					
	1 = Data is cl	ocked on rising	a edae of the a	clock					
	0 = Data is cl	ocked on fallin	g edge of the	clock					
bit 3	BRG16: 16-B	it Baud Rate	Generator bit						
	1 = 16-bit Ba	ud Rate Gener	rator is used						
	0 = 8-bit Bau	d Rate Genera	ator is used						
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	WUE: Wake-	up Enable bit							
	Asynchronou:	<u>s mode:</u> ; is waiting for a	falling edge:	no character w	vill be received	RCIE bit will be	set WIF will		
	automati	cally clear after	r RCIF is set						
	0 = Receiver	is operating n	ormally						
	Synchronous	mode:							
hit 0			Enable bit						
		o-bauu Deleci s mode:							
	1 = Auto-Bau	ud Detect mode	e is enabled (o	clears when au	to-baud is com	olete)			
	0 = Auto-Bau	ud Detect mode	e is disabled						
	Synchronous	mode:							
	Don't care.								

REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER

FIGURE 21-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

- 0605 (N.	proprio program program Program program program Program program	NUTURA Kanadari				WAYAYA WAYAYAYA	avanan. Avaan				192
- VALEE BR. <u></u>		, , , , , , , , , , , , , , , , , , ,	:								, , ,
806303 []] (368-]	······ · ·	······································							······ · ·		
80F	; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: 	: '' 	· · · · · · · · · · · · · · · · · · ·	: ; 	,	 Gillillilli	 innin UUUUU		\	ر مان ر
• • • • • •	e Na series de la companya de la comp	• • • • • • • • • • • •	- 1975-0	e. An an Anna an Anna Anna Anna Anna Anna							

FIGURE 21-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	[CC[03]-24] -	azientarian	je dozł	3[02]	xicaica	90%)	40240.	u a se a s			- 24	odecios(X)	niczęcnicki	nice i calerie	3
	nununuj. 28880 - L	ununun. Adda			uaua.		unun.	ununur.	Ξ.			nananad	er Viurunu	nunununu Set Set Sysse	3 806CO
	······		S 6 5					· · · · · · · · · · · · · · · · · · ·				;	ر ۶۰ 	·····	- WOB hay L
		; 	880-3 1 2	8: 597 		.:9886 			s Ž	Ś			•	1	800031 1981 1981
even period and a strand a st		stee ²	880038	34 ्रे	iear Ror	es mi	ared de	<u>(</u>):		Seen Erd	S	i Essociad	en Command	 Siès	neutor și
www.sin 4 the wave-up scala and and and an wave and the state and the solar wave and subject to solar wave and In statistics, this sequence should not depend on the presence of O concest	uso signal	Nie die orip	on white	: 6506.	i tii con	YX.ª	g of the	380 (268-9 26629	eukee Sidé C	Sine, the Sinesore	Sator starmatics Exaptend on the	inas ong asri or biodis no	p sooni ooqu This seques	ii ihe woke o le ski ookee.	3000 St

NOTES:

PIC12(L)F1571/2

FIGURE 22-11: CONTINUOUS SLAVE RUN MODE WITH IMMEDIATE RESET AND SYNC START TIMING DIAGRAM

REGISTER 22-2: PWMxINTE: PWMx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	—	OFIE	PHIE	DCIE	PRIE
bit 7							bit 0

Legend:			
R = Readable	bit	W = Writable bit	
u = Bit is unchanged		x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set		'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets
bit 7-4	Unimpleme	ented: Read as '0'	

bit 3	OFIE: Offset Interrupt Enable bit
	1 = Interrupts CPU on offset match
	0 = Does not interrupt CPU on offset match
bit 2	PHIE: Phase Interrupt Enable bit
	1 = Interrupts CPU on phase match
	0 = Does not Interrupt CPU on phase match
bit 1	DCIE: Duty Cycle Interrupt Enable bit
	1 = Interrupts CPU on duty cycle match
	0 = Does not interrupt CPU on duty cycle match
bit 0	PRIE: Period Interrupt Enable bit
	1 = Interrupts CPU on period match
	0 = Does not interrupt CPU on period match

REGISTER 22-6: PWMxOFCON: PWMx OFFSET TRIGGER SOURCE SELECT REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
	OFM	<1:0>	OFO ⁽¹⁾	—	—	OFS<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7	Unimplemented: Read as '0'
bit 6-5	OFM<1:0>: Offset Mode Select bits
	11 = Continuous Slave Run mode with immediate Reset and synchronized start when the selected offset trigger occurs
	 10 = One-Shot Slave Run mode with synchronized start when the selected offset trigger occurs 01 = Independent Slave Run mode with synchronized start when the selected offset trigger occurs 00 = Independent Run mode
bit 4	OFO: Offset Match Output Control bit ⁽¹⁾
	If MODE<1:0> = 11 (PWM Center-Aligned mode): 1 = OFx_match occurs on counter match when counter decrementing, (second match) 0 = OFx_match occurs on counter match when counter incrementing, (first match)
	If MODE<1:0> = 00, 01 or 10 (all other modes): Bit is ignored.
bit 3-2	Unimplemented: Read as '0'
bit 1-0	OFS<1:0>: Offset Trigger Source Select bits
	$11 = OF3_match^{(1)}$ $10 = OF2_match^{(1)}$ $01 = OF1_match^{(1)}$ 00 = Reserved

Note 1: The OFx_match corresponding to the PWM used becomes reserved.

REGISTER 22-13: PWMxOFH: PWMx OFFSET COUNT
--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			OF<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all	other Resets

bit 7-0 OF<15:8>: PWMx Offset High bits Upper eight bits of PWM offset count.

REGISTER 22-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | OF< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 OF<7:0>: PWMx Offset Low bits Lower eight bits of PWM offset count.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PWM3INTE	—	—	—	—	OFIE	PHIE	DCIE	PRIE	217
PWM3INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	218
PWM3CLKCON	—	PS<2:0>			—	—	CS<	<1:0>	219
PWM3LDCON	LDA	LDT	_	_	—	—	LDS	<1:0>	220
PWM30FC0N	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	221

TABLE 22-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PWM (CONTINUED)
--------------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the PWM.

TABLE 22-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	_	CLKOUTEN	CLKOUTEN BOREN<1:0>		—	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	42

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

23.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- · Output polarity control
- Dead-band control with independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

23.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 23.5 "Dead-Band Control"**. A typical operating waveform with dead band, generated from a single input signal, is shown in Figure 23-2.

It may be necessary to guard against the possibility of circuit Faults or a feedback event arriving too late, or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 23.9 "Auto-Shutdown Control"**.

23.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 23-1).

23.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 23-1.

TABLE 23-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name		
Comparator C1	C1OUT_sync		
PWM1	PWM1_output		
PWM2	PWM2_output		
PWM3	PWM3_output		

The input sources are selected using the GxIS<2:0> bits in the CWGxCON1 register (Register 23-2).

23.4 Output Control

Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared.

23.4.1 OUTPUT ENABLES

Each CWG output pin has individual output enable control. Output enables are selected with the GxOEA and GxOEB bits of the CWGxCON0 register. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, GxEN. When GxEN is cleared, CWG output enables and CWG drive levels have no effect.

23.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.

24.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™)

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode, the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM, refer to the *"PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification"* (DS41573).

24.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low, then raising the voltage on MCLR/VPP to VIHH.

24.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] MCUs (Flash) to be programmed using VDD only, without high voltage. When the LVP bit of the Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT while clocking ICSPCLK.

Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

If Low-Voltage Programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

24.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 24-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 24-2.

PIC12(L)F1571/2

RETFIE	Return from Interrupt					
Syntax:	[label] RETFIE					
Operands:	None					
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$					
Status Affected:	None					
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction					
Words:	1					
Cycles:	2					
Example:	RETFIE					
	After Interrupt PC = TOS GIE = 1					

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS \rightarrow PC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the Program Counter. This is a 2-cycle instruction.				

RETLW	Return with literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	$d \in [0,1]$ See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the 8-bit literal 'k'. The Program Counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1		C Register f
Cycles:	2		
Example:	CALL TABLE;W contains table	vvords:	1
	;offset value	Cycles:	1
	 ;W now has table value 	Example:	RLF REG1,0
TABLE	•		Before Instruction
	ADDWF PC ;W = offset		REG1 = 1110 0110
	RETLW k1 ;Begin table		C = 0
	RETLW k2 ;		
	•		W = 1100110
	•		C = 1
	• RETLW kn ; End of table		
	Before Instruction W = 0x07 After Instruction W = value of k8		

PIC12(L)F1571/2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX			
Contact Pitch E		0.65 BSC					
Contact Pad Spacing	С		4.40				
Overall Width	Z			5.85			
Contact Pad Width (X8)	X1			0.45			
Contact Pad Length (X8)	Y1			1.45			
Distance Between Pads	G1	2.95					
Distance Between Pads		0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A