

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161sl25maabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2003-11 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C161S

Revision History: 2003-11

Previous Version: none										
Page	Subjects (major changes since last revision)									

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 \ge

V1.0

General Device Information

2.2 Pin Configuration and Definition

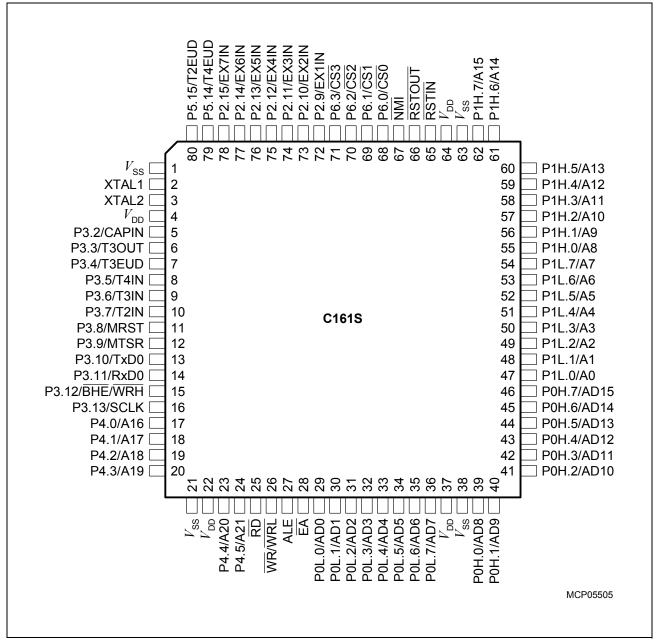


Figure 2 Pin Configuration (top view)

General Device Information

Table 2	Pin	Definit	tions and Functions
Symbol	Pin No.	Input Outp.	Function
XTAL1	2	1	XTAL1: Input to the oscillator amplifier and input to the internal clock generator
XTAL2	3	0	XTAL2: Output of the oscillator amplifier circuit. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics (see Chapter 5.4) must be observed.
P3		IO	Port 3 is a 12-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/pull or open drain drivers. The following Port 3 pins also serve for alternate functions:
P3.2	5	1	CAPIN GPT2 Register CAPREL Capture Input
P3.3	6	0	T3OUT GPT1 Timer T3 Toggle Latch Output
P3.4	7	1	T3EUD GPT1 Timer T3 External Up/Down Control Input
P3.5	8	1	T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp.
P3.6	9	1	T3IN GPT1 Timer T3 Count/Gate Input
P3.7	10	1	T2IN GPT1 Timer T2 Count/Gate/Reload/Capture Inp.
P3.8	11	I/O	MRST SSC Master-Receive/Slave-Transmit Inp./Outp.
P3.9	12	I/O	MTSR SSC Master-Transmit/Slave-Receive Outp./Inp.
P3.10	13	0	TxD0 ASC0 Clock/Data Output (Async./Sync.)
P3.11	14	I/O	RxD0 ASC0 Data Input (Async.) or Inp./Outp. (Sync.)
P3.12	15	0	BHE External Memory High Byte Enable Signal,
		0	WRH External Memory High Byte Write Strobe
P3.13	16	I/O	SCLK SSC Master Clock Output / Slave Clock Input.
P4		IO	Port 4 is a 6-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 4 can be used to output the segment address lines:
P4.0	17	0	A16 Least Significant Segment Address Line
P4.1	18	0	A17 Segment Address Line
P4.2	19	0	A18 Segment Address Line
P4.2 P4.3	20	0	A19 Segment Address Line
P4.3 P4.4	20	0	A20 Segment Address Line
P4.5	23	0	A21 Segment Address Line
1 7.5	4 7	U	

Functional Description

3.1 Memory Organization

The memory space of the C161S is configured in a von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 Mbytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

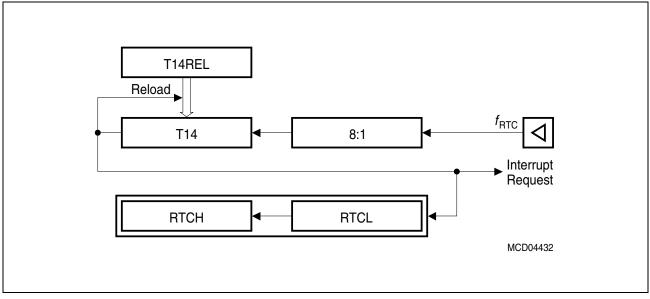
The C161S is prepared to incorporate on-chip program memory (not in the ROM-less derivatives, of course) for code or constant data. The internal ROM area can be mapped either to segment 0 or segment 1.

2 Kbytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 Mbytes of external RAM and/or ROM can be connected to the microcontroller. The maximum contiguous external address space is 4 Mbytes, i.e. this is the maximum address window size. Using the chip-select lines (multiple windows) this results in a maximum usable external address space of 16 Mbytes.

C161S


Functional Description

3.5 Real Time Clock

The Real Time Clock (RTC) module of the C161S consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided by 32 via a separate clock driver ($f_{\rm RTC} = f_{\rm OSC}/32$) and is therefore independent from the selected clock generation mode of the C161S. All timers count up.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time based interrupt
- 48-bit timer for long term measurements

Figure 7 RTC Block Diagram

Note: The registers associated with the RTC are not affected by a reset in order to maintain the correct system time even when intermediate resets are executed.

Functional Description

3.7 Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/128. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between $25 \,\mu s$ and $420 \,m s$ can be monitored (@ 20 MHz).

The default Watchdog Timer interval after reset is 6.55 ms (@ 20 MHz).

3.8 Parallel Ports

The C161S provides up to 63 I/O lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A21/19/17 ... A16 in systems where segmentation is enabled to access more than 64 Kbytes of memory. Port 6 provides optional chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, and the optional bus control signal BHE.

Port 5 is used for timer control signals.

Functional Description

Table 6C161S Registers, Ordered by Name (cont'd)

Name Physic Addres			8-Bit Addr.	Description	Reset Value
POL	b	FF00 _H	80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H	82 _H	Port 1 Low Reg.(Lower half of PORT1)	00 _H
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H	64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H	66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H
PSW	b	FF10 _H	88 _H	CPU Program Status Word	0000 _H
RP0H	b	F108 _H E	84 _H	System Startup Config. Reg. (Rd. only)	XX _H
RTCH		F0D6 _H E	6B _H	RTC High Register	XXXX _H
RTCL		F0D4 _H E	6A _H	RTC Low Register	XXXX _H
S0BG		FEB4 _H	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
S0CON	b	FFB0 _H	D8 _H	Serial Channel 0 Control Register	0000 _H
S0EIC	b	FF70 _H	B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H
SORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XX _H
SORIC	b	FF6E _H	B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H E	CE _H	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H

Electrical Parameters

Table 10	DC Characteristics (Reduced Supply Voltage Range)
	(Operating Conditions apply) ¹⁾

Parameter	Sym	bol	Limit	Values	Unit	Test Condition
			Min.	Max.		
Input low voltage (TTL, all except XTAL1)	V_{IL}	SR	-0.5	0.8	V	-
Input low voltage XTAL1	$V_{\rm IL2}$	SR	-0.5	0.3 V _{DD}	V	-
Input high voltage (TTL, all except RSTIN and XTAL1)	V_{IH}	SR	1.8	V _{DD} + 0.5	V	-
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage XTAL1	$V_{\rm IH2}$	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	_	0.45	V	I _{OL} = 1.6 mA
Output low voltage (all other outputs)	V _{OL1}	CC	_	0.45	V	I _{OL} = 1.0 mA
Output high voltage ³⁾ (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)	V _{OH}	CC	0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Output high voltage ³⁾ (all other outputs)	V _{OH1}	CC	0.9 V _{DD}	_	V	I _{OH} = -0.25 mA
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 V < V_{IN} < V_{DD}$
Input leakage current (all other)	I _{OZ2}	CC	_	±500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{DD}}$
RSTIN inactive current ⁴⁾	I _{RSTH}	5)	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$
RSTIN active current ⁴⁾	I _{RSTL}	6)	-100	_	μA	$V_{\rm IN} = V_{\rm IL}$
RD/WR inactive current ⁷⁾	I _{RWH} ⁵	5)	_	-10	μA	$V_{\rm OUT}$ = 2.4 V
RD/WR active current ⁷⁾	$I_{\rm RWL}^{6)}$		-500	_	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{(5)}$		_	20	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾		500		μA	$V_{\rm OUT}$ = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾		_	-10	μA	$V_{\rm OUT}$ = 2.4 V
Port 6 active current ⁷⁾	$I_{\rm P6L}^{6)}$		-500	_	μA	$V_{\rm OUT} = V_{\rm OL1max}$

C161S

Electrical Parameters

Table 10DC Characteristics (Reduced Supply Voltage Range) (cont'd)
(Operating Conditions apply)¹⁾

Parameter	Symbol		Limit	Values	Unit	Test Condition
			Min.	Max.		
PORT0 configuration current ⁷⁾	I _{P0H} ⁵⁾		_	-5	μA	$V_{\rm IN} = V_{\rm IHmin}$
	<i>I</i> _{P0L} ⁶⁾		-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	$I_{\rm IL}$	CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁸⁾ (digital inputs/outputs)	C _{IO}	CC	_	10	pF	<i>f</i> = 1 MHz, <i>T</i> _A = 25 °C

1) Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

2) Valid in bidirectional reset mode only.

3) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

4) These parameters describe the $\overline{\text{RSTIN}}$ pull-up, which equals a resistance of ca. 50 to 250 k Ω .

5) The maximum current may be drawn while the respective signal line remains inactive.

6) The minimum current must be drawn in order to drive the respective signal line active.

7) This specification is only valid during Reset and Adapt Mode.

8) Not subject to production test, verified by design/characterization.

Electrical Parameters

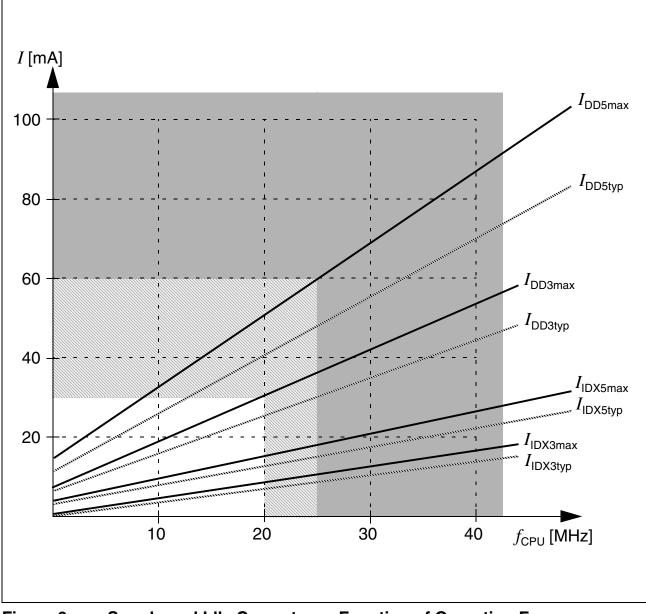


Figure 8 Supply and Idle Current as a Function of Operating Frequency

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 11).

For a period of $N \times \text{TCL}$ the minimum value is computed using the corresponding deviation D_{N} :

$$(\mathbf{N} \times \mathrm{TCL})_{\min} = \mathbf{N} \times \mathrm{TCL}_{\mathrm{NOM}} - \mathbf{D}_{\mathbf{N}}, \ \mathbf{D}_{\mathbf{N}} \ [\mathrm{ns}] = \pm (13.3 + \mathbf{N} \times 6.3) \ / \ f_{\mathrm{CPU}} \ [\mathrm{MHz}]$$
(1)

where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 20 MHz (i.e. $\mathbf{N} = 3$): $D_3 = (13.3 + 3 \times 6.3) / 20 = 1.61$ ns, and $(3TCL)_{min} = 3TCL_{NOM} - 1.61$ ns = 73.39 ns (@ $f_{CPU} = 20$ MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 11).

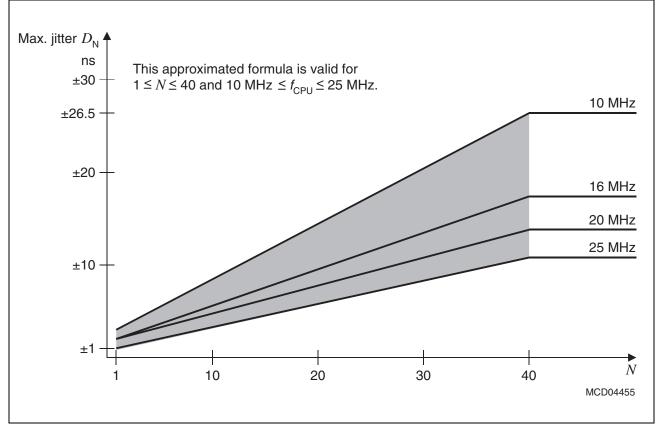


Figure 11 Approximated Maximum Accumulated PLL Jitter

(2)

Timing Characteristics

Direct Drive

When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of $f_{\rm CPU}$ directly follows the frequency of $f_{\rm OSC}$ so the high and low time of $f_{\rm CPU}$ (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock $f_{\rm OSC}$.

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

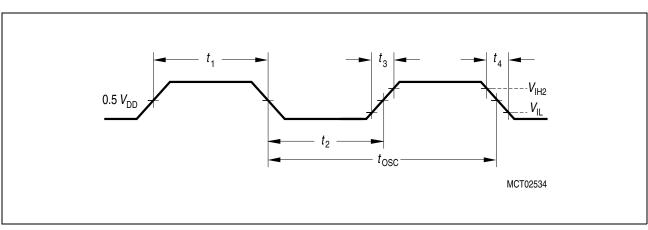
 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

C161S

Timing Characteristics

5.2 External Clock Drive XTAL1


Table 14 External Clock Drive XTAL1 (Operating Conditions apply)

Parameter	Sym	Symbol		Direct Drive 1:1		Prescaler 2:1		PLL 1:N	
			Min.	Max.	Min.	Max.	Min.	Max.	7
Oscillator period	t _{OSC}	SR	40	-	20	-	60 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	20 ³⁾	_	5	-	10	-	ns
Low time ²⁾	<i>t</i> ₂	SR	20 ³⁾	_	5	_	10	_	ns
Rise time ²⁾	t ₃	SR	_	8	_	5	_	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	_	8	-	5	_	10	ns

1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

2) The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 12 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not tested in production).

Table 16Multiplexed Bus (Standard Supply Voltage Range) (cont'd)
(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock 5 MHz	Variable (1 / 2TCL =	Unit	
			Min.	Max.	Min.	Max.	
ALE fall. edge to \overline{RdCS} , WrCS (with RW delay)	<i>t</i> ₄₂	CC	$16 + t_A$	-	TCL - 4 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	-	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	<i>t</i> ₄₅	CC	-	20	-	TCL	ns
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆	SR	-	$16 + t_{\rm C}$	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇	SR	-	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	<i>t</i> ₄₉	CC	$50 + t_{\rm C}$	_	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	_	0	-	ns
Data float after RdCS	<i>t</i> ₅₂	SR	-	$20 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄	CC	$20 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆	CC	$20 + t_{F}$	-	2TCL - 20 + <i>t</i> _F	-	ns

These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

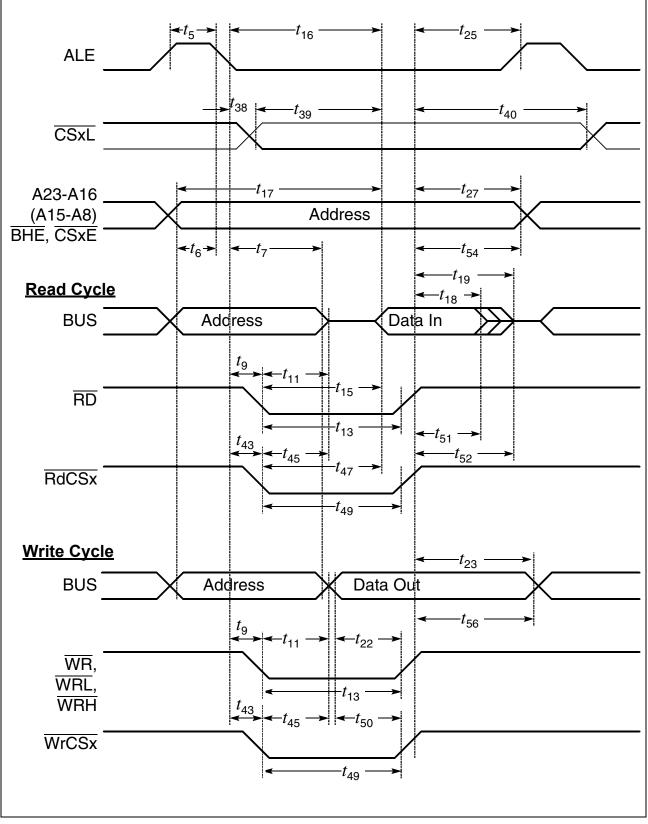


Figure 17 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

Table 18Demultiplexed Bus (Standard Supply Voltage Range)
(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock MHz	Variable (1 / 2TCL =	Unit	
			Min. Max.		Min.	Max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	_	-10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	_	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	-	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$40 + t_{A} + t_{C}$	_	$\begin{array}{l} \text{3TCL - 20} \\ + t_{\text{A}} + t_{\text{C}} \end{array}$	ns
Address to valid data in	<i>t</i> ₁₇	SR	-	$50 + 2t_{A} + t_{C}$	_	$\begin{array}{c} 4\text{TCL} - 30 \\ + 2t_{\text{A}} + t_{\text{C}} \end{array}$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after \overline{RD} rising edge (with RW-delay ¹⁾)	t ₂₀	SR	-	$26 + 2t_{A} + t_{F}^{1)}$	-	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	$10 + 2t_{A} + t_{F}^{1)}$	_	TCL - 10 + $22t_{A}$ + $t_{F}^{1)}$	ns
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns

Table 18Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)
(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock 6 MHz	Variable (1 / 2TCL =	Unit	
			Min.	Max.	Min.	Max.	
Data hold after \overline{WR}	<i>t</i> ₂₄	CC	$10 + t_{\rm F}$	-	TCL - 10 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\text{WR}}$	t ₂₆	CC	-10 + <i>t</i> _F	-	$-10 + t_{\rm F}$	-	ns
Address hold after WR ²⁾	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_F$	_	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	-	$40 + t_{\rm C} + 2t_{\rm A}$	_	$\begin{array}{c} \text{3TCL - 20} \\ + t_{\text{C}} + 2t_{\text{A}} \end{array}$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁	CC	$6 + t_{F}$	_	TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW-delay)	t ₄₂	CC	$16 + t_A$	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW-delay)	t ₄₃	CC	$-4 + t_A$	-	-4 + t _A	-	ns
RdCS to Valid Data In (with RW-delay)	<i>t</i> ₄₆	SR	-	$16 + t_{\rm C}$	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	-	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	<i>t</i> ₄₉	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	_	0	-	ns
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	-	$20 + t_{\rm F}$	-	2TCL - 20 + $2t_A + t_F^{(1)}$	ns

Table 19Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)
(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock MHz	Variable (1 / 2TCL =	Unit	
			Min.	Max.	Min.	Max.	
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈	SR	-	$5 + t_{F}$	_	TCL - 20 + $2t_A + t_F^{(1)}$	ns
Address hold after RdCS, WrCS	t ₅₅	CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	_	ns
Data hold after WrCS	t ₅₇	CC	$9 + t_{F}$	-	TCL - 16 + <i>t</i> _F	-	ns

1) RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising $\overline{\text{RD}}$ edge. Therefore address changes before the end of $\overline{\text{RD}}$ have no impact on read cycles.

3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

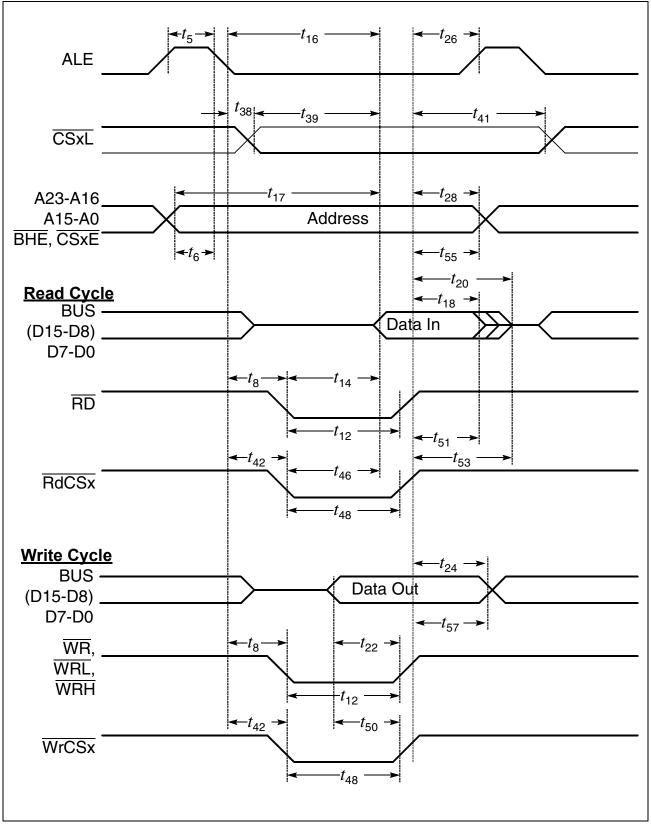


Figure 19 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE