



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | -                                                                            |
| Core Size                  | -                                                                            |
| Speed                      | -                                                                            |
| Connectivity               | -                                                                            |
| Peripherals                | -                                                                            |
| Number of I/O              | -                                                                            |
| Program Memory Size        | -                                                                            |
| Program Memory Type        | -                                                                            |
| EEPROM Size                | -                                                                            |
| RAM Size                   | -                                                                            |
| Voltage - Supply (Vcc/Vdd) | -                                                                            |
| Data Converters            | -                                                                            |
| Oscillator Type            | -                                                                            |
| Operating Temperature      | -                                                                            |
| Mounting Type              | -                                                                            |
| Package / Case             | -                                                                            |
| Supplier Device Package    | -                                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/c161slm3vaabxuma1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2003-11 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved.

#### **Attention please!**

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

# C161S 16-Bit Single-Chip Microcontroller

# Microcontrollers



Never stop thinking.



#### **Summary of Features**

This document describes several derivatives of the C161 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

| Derivative     | Max. Operating<br>Frequency | Operating Voltage       | Ambient<br>Temperature |
|----------------|-----------------------------|-------------------------|------------------------|
| SAB-C161S-L25M | 25 MHz                      | 4.5 to 5.5 V (Standard) | 0 to 70 °C             |
| SAF-C161S-L25M | 25 MHz                      | 4.5 to 5.5 V (Standard) | -40 to 85 °C           |
| SAB-C161S-LM3V | 20 MHz                      | 3.0 to 3.6 V (Reduced)  | 0 to 70 °C             |
| SAF-C161S-LM3V | 20 MHz                      | 3.0 to 3.6 V (Reduced)  | -40 to 85 °C           |

## Table 1C161S Derivative Synopsis

For simplicity all versions are referred to by the term C161S throughout this document.

## **Ordering Information**

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C161S please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.





## 3.1 Memory Organization

The memory space of the C161S is configured in a von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 Mbytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C161S is prepared to incorporate on-chip program memory (not in the ROM-less derivatives, of course) for code or constant data. The internal ROM area can be mapped either to segment 0 or segment 1.

2 Kbytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes ( $2 \times 512$  bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 Mbytes of external RAM and/or ROM can be connected to the microcontroller. The maximum contiguous external address space is 4 Mbytes, i.e. this is the maximum address window size. Using the chip-select lines (multiple windows) this results in a maximum usable external address space of 16 Mbytes.



## 3.3 Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161S's instructions can be executed in just one machine cycle which requires 100 ns at 20 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a  $16 \times 16$  bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.



## Figure 4 CPU Block Diagram

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.



## Table 3 C161S Interrupt Nodes

| Source of Interrupt or<br>PEC Service Request | Request<br>Flag | Enable<br>Flag | Interrupt<br>Vector | Vector<br>Location   | Trap<br>Number  |
|-----------------------------------------------|-----------------|----------------|---------------------|----------------------|-----------------|
| Unassigned node                               | CC8IR           | CC8IE          | CC8INT              | 00'0060 <sub>H</sub> | 18 <sub>H</sub> |
| External Interrupt 1                          | CC9IR           | CC9IE          | CC9INT              | 00'0064 <sub>H</sub> | 19 <sub>H</sub> |
| External Interrupt 2                          | CC10IR          | CC10IE         | CC10INT             | 00'0068 <sub>H</sub> | 1A <sub>H</sub> |
| External Interrupt 3                          | CC11IR          | CC11IE         | CC11INT             | 00'006C <sub>H</sub> | 1B <sub>H</sub> |
| External Interrupt 4                          | CC12IR          | CC12IE         | CC12INT             | 00'0070 <sub>H</sub> | 1C <sub>H</sub> |
| External Interrupt 5                          | CC13IR          | CC13IE         | CC13INT             | 00'0074 <sub>H</sub> | 1D <sub>H</sub> |
| External Interrupt 6                          | CC14IR          | CC14IE         | CC14INT             | 00'0078 <sub>H</sub> | 1Е <sub>н</sub> |
| External Interrupt 7                          | CC15IR          | CC15IE         | CC15INT             | 00'007C <sub>H</sub> | 1F <sub>H</sub> |
| GPT1 Timer 2                                  | T2IR            | T2IE           | T2INT               | 00'0088 <sub>H</sub> | 22 <sub>H</sub> |
| GPT1 Timer 3                                  | T3IR            | T3IE           | T3INT               | 00'008C <sub>H</sub> | 23 <sub>H</sub> |
| GPT1 Timer 4                                  | T4IR            | T4IE           | T4INT               | 00'0090 <sub>H</sub> | 24 <sub>H</sub> |
| GPT2 Timer 5                                  | T5IR            | T5IE           | T5INT               | 00'0094 <sub>H</sub> | 25 <sub>H</sub> |
| GPT2 Timer 6                                  | T6IR            | T6IE           | T6INT               | 00'0098 <sub>H</sub> | 26 <sub>H</sub> |
| GPT2 CAPREL Reg.                              | CRIR            | CRIE           | CRINT               | 00'009C <sub>H</sub> | 27 <sub>H</sub> |
| Unassigned node                               | ADCIR           | ADCIE          | ADCINT              | 00'00A0 <sub>H</sub> | 28 <sub>H</sub> |
| Unassigned node                               | ADEIR           | ADEIE          | ADEINT              | 00'00A4 <sub>H</sub> | 29 <sub>H</sub> |
| ASC0 Transmit                                 | S0TIR           | SOTIE          | SOTINT              | 00'00A8 <sub>H</sub> | 2A <sub>H</sub> |
| ASC0 Transmit Buffer                          | S0TBIR          | SOTBIE         | SOTBINT             | 00'011C <sub>H</sub> | 47 <sub>H</sub> |
| ASC0 Receive                                  | S0RIR           | SORIE          | SORINT              | 00'00AC <sub>H</sub> | 2B <sub>H</sub> |
| ASC0 Error                                    | S0EIR           | SOEIE          | SOEINT              | 00'00B0 <sub>H</sub> | 2C <sub>H</sub> |
| SSC Transmit                                  | SCTIR           | SCTIE          | SCTINT              | 00'00B4 <sub>H</sub> | 2D <sub>H</sub> |
| SSC Receive                                   | SCRIR           | SCRIE          | SCRINT              | 00'00B8 <sub>H</sub> | 2E <sub>H</sub> |
| SSC Error                                     | SCEIR           | SCEIE          | SCEINT              | 00'00BC <sub>H</sub> | 2F <sub>H</sub> |
| Unassigned node                               | XP0IR           | XP0IE          | XP0INT              | 00'0100 <sub>H</sub> | 40 <sub>H</sub> |
| Unassigned node                               | XP1IR           | XP1IE          | XP1INT              | 00'0104 <sub>H</sub> | 41 <sub>H</sub> |
| Unassigned node                               | XP2IR           | XP2IE          | XP2INT              | 00'0108 <sub>H</sub> | 42 <sub>H</sub> |
| PLL/OWD and RTC                               | XP3IR           | XP3IE          | XP3INT              | 00'010C <sub>H</sub> | 43 <sub>H</sub> |
| Unassigned node                               | CC29IR          | CC29IE         | CC29INT             | 00'0110 <sub>H</sub> | 44 <sub>H</sub> |
| Unassigned node                               | CC30IR          | CC30IE         | CC30INT             | 00'0114 <sub>H</sub> | 45 <sub>H</sub> |
| Unassigned node                               | CC31IR          | CC31IE         | CC31INT             | 00'0118 <sub>H</sub> | 46 <sub>H</sub> |



The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.









## 3.10 Power Management

The C161S provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C161S into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Power Down Mode stops all clock signals and all operation (RTC may optionally continue running).

- Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
   Slow Down Mode lets the C161S run at a CPU clock frequency of f<sub>OSC</sub> / 1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.
- Peripheral Management permits temporary disabling of peripheral modules (control via register SYSCON3).
   Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittent operation of the C161S by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.



## Table 6C161S Registers, Ordered by Name (cont'd)

| Name    |   | Physica<br>Addres | al<br>S | 8-Bit<br>Addr.  | Description                             | Reset<br>Value    |
|---------|---|-------------------|---------|-----------------|-----------------------------------------|-------------------|
| СР      |   | FE10 <sub>H</sub> |         | 08 <sub>H</sub> | CPU Context Pointer Register            | FC00 <sub>H</sub> |
| CRIC    | b | FF6A <sub>H</sub> |         | B5 <sub>H</sub> | GPT2 CAPREL Interrupt Ctrl. Reg.        | 0000 <sub>H</sub> |
| CSP     |   | FE08 <sub>H</sub> |         | 04 <sub>H</sub> | CPU Code Seg. Pointer Reg. (read only)  | 0000 <sub>H</sub> |
| DP0H    | b | F102 <sub>H</sub> | Ε       | 81 <sub>H</sub> | P0H Direction Control Register          | 00 <sub>H</sub>   |
| DP0L    | b | F100 <sub>H</sub> | Ε       | 80 <sub>H</sub> | P0L Direction Control Register          | 00 <sub>H</sub>   |
| DP1H    | b | F106 <sub>H</sub> | Ε       | 83 <sub>H</sub> | P1H Direction Control Register          | 00 <sub>H</sub>   |
| DP1L    | b | F104 <sub>H</sub> | Ε       | 82 <sub>H</sub> | P1L Direction Control Register          | 00 <sub>H</sub>   |
| DP2     | b | FFC2 <sub>H</sub> |         | E1 <sub>H</sub> | Port 2 Direction Control Register       | 0000 <sub>H</sub> |
| DP3     | b | FFC6 <sub>H</sub> |         | E3 <sub>H</sub> | Port 3 Direction Control Register       | 0000 <sub>H</sub> |
| DP4     | b | FFCA <sub>H</sub> |         | E5 <sub>H</sub> | Port 4 Direction Control Register       | 00 <sub>H</sub>   |
| DP6     | b | FFCE <sub>H</sub> |         | E7 <sub>H</sub> | Port 6 Direction Control Register       | 00 <sub>H</sub>   |
| DPP0    |   | FE00 <sub>H</sub> |         | 00 <sub>H</sub> | CPU Data Page Pointer 0 Reg. (10 bits)  | 0000 <sub>H</sub> |
| DPP1    |   | FE02 <sub>H</sub> |         | 01 <sub>H</sub> | CPU Data Page Pointer 1 Reg. (10 bits)  | 0001 <sub>H</sub> |
| DPP2    |   | FE04 <sub>H</sub> |         | 02 <sub>H</sub> | CPU Data Page Pointer 2 Reg. (10 bits)  | 0002 <sub>H</sub> |
| DPP3    |   | FE06 <sub>H</sub> |         | 03 <sub>H</sub> | CPU Data Page Pointer 3 Reg. (10 bits)  | 0003 <sub>H</sub> |
| EXICON  | b | F1C0 <sub>H</sub> | Ε       | E0 <sub>H</sub> | External Interrupt Control Register     | 0000 <sub>H</sub> |
| IDCHIP  |   | F07C <sub>H</sub> | Ε       | 3E <sub>H</sub> | Identifier                              | 05XX <sub>H</sub> |
| IDMANUF |   | F07E <sub>H</sub> | Ε       | 3F <sub>H</sub> | Identifier                              | 1820 <sub>H</sub> |
| IDMEM   |   | F07A <sub>H</sub> | Ε       | 3D <sub>H</sub> | Identifier                              | 0000 <sub>H</sub> |
| IDMEM2  |   | F076 <sub>H</sub> | Ε       | 3B <sub>H</sub> | Identifier                              | 0000 <sub>H</sub> |
| IDPROG  |   | F078 <sub>H</sub> | Ε       | 3C <sub>H</sub> | Identifier                              | 0000 <sub>H</sub> |
| ISNC    | b | F1DE <sub>H</sub> | Ε       | EF <sub>H</sub> | Interrupt Subnode Control Register      | 0000 <sub>H</sub> |
| MDC     | b | FF0E <sub>H</sub> |         | 87 <sub>H</sub> | CPU Multiply Divide Control Register    | 0000 <sub>H</sub> |
| MDH     |   | FE0C <sub>H</sub> |         | 06 <sub>H</sub> | CPU Multiply Divide Reg. – High Word    | 0000 <sub>H</sub> |
| MDL     |   | FE0E <sub>H</sub> |         | 07 <sub>H</sub> | CPU Multiply Divide Reg. – Low Word     | 0000 <sub>H</sub> |
| ODP2    | b | F1C2 <sub>H</sub> | Ε       | E1 <sub>H</sub> | Port 2 Open Drain Control Register      | 0000 <sub>H</sub> |
| ODP3    | b | F1C6 <sub>H</sub> | Е       | E3 <sub>H</sub> | Port 3 Open Drain Control Register      | 0000 <sub>H</sub> |
| ODP6    | b | F1CE <sub>H</sub> | Ε       | E7 <sub>H</sub> | Port 6 Open Drain Control Register      | 00 <sub>H</sub>   |
| ONES    | b | FF1E <sub>H</sub> |         | 8F <sub>H</sub> | Constant Value 1's Register (read only) | FFFF <sub>H</sub> |
| P0H     | b | FF02 <sub>H</sub> |         | 81 <sub>H</sub> | Port 0 High Reg. (Upper half of PORT0)  | 00 <sub>H</sub>   |





# 4 Electrical Parameters

## 4.1 Absolute Maximum Ratings

| Parameter                                                                  | Symbol Limit Values |      | Unit                  | Notes |            |
|----------------------------------------------------------------------------|---------------------|------|-----------------------|-------|------------|
|                                                                            |                     | Min. | Max.                  |       |            |
| Storage temperature                                                        | T <sub>ST</sub>     | -65  | 150                   | °C    | -          |
| Junction temperature                                                       | TJ                  | -40  | 150                   | °C    | under bias |
| Voltage on $V_{\text{DD}}$ pins with respect to ground ( $V_{\text{SS}}$ ) | V <sub>DD</sub>     | -0.5 | 6.5                   | V     | -          |
| Voltage on any pin with respect to ground $(V_{SS})$                       | V <sub>IN</sub>     | -0.5 | V <sub>DD</sub> + 0.5 | V     | _          |
| Input current on any pin during overload condition                         | I <sub>OV</sub>     | -10  | 10                    | mA    | _          |
| Absolute sum of all input<br>currents during overload<br>condition         | $\Sigma  I_{OV} $   | _    | 100                   | mA    | _          |
| Power dissipation                                                          | P <sub>DISS</sub>   | _    | 1.5                   | W     | -          |

#### Table 7Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ( $V_{IN} > V_{DD}$  or  $V_{IN} < V_{SS}$ ) the voltage on  $V_{DD}$  pins with respect to ground ( $V_{SS}$ ) must not exceed the values defined by the absolute maximum ratings.



## 4.2 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C161S. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

| Parameter                          | Symbol            | Limit Values      |      | Unit | Notes                                         |
|------------------------------------|-------------------|-------------------|------|------|-----------------------------------------------|
|                                    |                   | Min.              | Max. |      |                                               |
| Standard<br>digital supply voltage | V <sub>DD</sub>   | 4.5               | 5.5  | V    | Active mode,<br>$f_{CPUmax} = 25 \text{ MHz}$ |
|                                    |                   | 2.5 <sup>1)</sup> | 5.5  | V    | Power down mode                               |
| Reduced<br>digital supply voltage  | V <sub>DD</sub>   | 3.0               | 3.6  | V    | Active mode,<br>$f_{CPUmax} = 20 \text{ MHz}$ |
|                                    |                   | 2.5 <sup>1)</sup> | 3.6  | V    | Power down mode                               |
| Digital ground voltage             | V <sub>SS</sub>   | 0                 |      | V    | Reference voltage                             |
| Overload current                   | I <sub>OV</sub>   | -                 | ±5   | mA   | Per pin <sup>2)3)</sup>                       |
| Absolute sum of overload currents  | $\Sigma  I_{OV} $ | -                 | 50   | mA   | 3)                                            |
| External Load<br>Capacitance       | CL                | -                 | 100  | pF   | -                                             |
| Ambient temperature                | T <sub>A</sub>    | 0                 | 70   | °C   | SAB-C161S                                     |
|                                    |                   | -40               | 85   | °C   | SAF-C161S                                     |
|                                    |                   | -40               | 125  | °C   | SAK-C161S                                     |

## Table 8 Operating Condition Parameters

1) Output voltages and output currents will be reduced when  $V_{\text{DD}}$  leaves the range defined for active mode.

2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V<sub>OV</sub> > V<sub>DD</sub> + 0.5 V or V<sub>OV</sub> < V<sub>SS</sub> - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc.

3) Not subject to production test, verified by design/characterization.



## 4.3 Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C161S and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

## CC (Controller Characteristics):

The logic of the C161S will provide signals with the respective timing characteristics.

## SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C161S.





Frequency



The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 11).

For a period of  $N \times \text{TCL}$  the minimum value is computed using the corresponding deviation  $\mathsf{D}_N$ :

$$(\mathbf{N} \times \mathrm{TCL})_{\min} = \mathbf{N} \times \mathrm{TCL}_{\mathrm{NOM}} - \mathbf{D}_{\mathbf{N}}, \ \mathbf{D}_{\mathbf{N}} \ [\mathrm{ns}] = \pm (13.3 + \mathbf{N} \times 6.3) \ / \ f_{\mathrm{CPU}} \ [\mathrm{MHz}]$$
(1)

where N = number of consecutive TCLs and  $1 \le N \le 40$ .

So for a period of 3 TCLs @ 20 MHz (i.e.  $\mathbf{N} = 3$ ):  $D_3 = (13.3 + 3 \times 6.3) / 20 = 1.61$  ns, and (3TCL)<sub>min</sub> = 3TCL<sub>NOM</sub> - 1.61 ns = 73.39 ns (@  $f_{CPU} = 20$  MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 11).



Figure 11 Approximated Maximum Accumulated PLL Jitter



## C161S

## **Timing Characteristics**

# Table 17Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)<br/>(Operating Conditions apply)

ALE cycle time = 6 TCL +  $2t_A + t_C + t_F$  (150 ns at 20 MHz CPU clock without waitstates)

| Parameter                                                                              | Sym                    | bol | Max. CPU Clock<br>= 20 MHz |                               | Variable C<br>1 / 2TCL =             | CPU Clock<br>1 to 20 MHz                                       | Unit |
|----------------------------------------------------------------------------------------|------------------------|-----|----------------------------|-------------------------------|--------------------------------------|----------------------------------------------------------------|------|
|                                                                                        |                        |     | Min.                       | Max.                          | Min.                                 | Max.                                                           |      |
| Data valid to $\overline{WR}$                                                          | t <sub>22</sub>        | CC  | $24 + t_{\rm C}$           | _                             | 2TCL - 26<br>+ <i>t</i> <sub>C</sub> | -                                                              | ns   |
| Data hold after $\overline{WR}$                                                        | t <sub>23</sub>        | CC  | $36 + t_{F}$               | _                             | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | -                                                              | ns   |
| $\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\text{WR}}$                 | t <sub>25</sub>        | CC  | $36 + t_{F}$               | _                             | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | -                                                              | ns   |
| Address hold after $\overline{RD}$ , WR                                                | t <sub>27</sub>        | CC  | $36 + t_{F}$               | _                             | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | _                                                              | ns   |
| ALE falling edge to $\overline{CS}^{1)}$                                               | t <sub>38</sub>        | CC  | -8 - t <sub>A</sub>        | 10 - <i>t</i> <sub>A</sub>    | -8 - <i>t</i> <sub>A</sub>           | 10 - <i>t</i> <sub>A</sub>                                     | ns   |
| CS low to Valid Data In <sup>1)</sup>                                                  | t <sub>39</sub>        | SR  | _                          | $47 + t_{\rm C} + 2t_{\rm A}$ | -                                    | 3TCL - 28<br>+ <i>t</i> <sub>C</sub> + 2 <i>t</i> <sub>A</sub> | ns   |
| $\overline{\text{CS}}$ hold after $\overline{\text{RD}}$ , $\overline{\text{WR}}^{1)}$ | <i>t</i> <sub>40</sub> | CC  | 57 + $t_{\rm F}$           | _                             | 3TCL - 18<br>+ <i>t</i> <sub>F</sub> | -                                                              | ns   |
| ALE fall. edge to RdCS,<br>WrCS (with RW delay)                                        | t <sub>42</sub>        | CC  | $19 + t_{A}$               | _                             | TCL - 6<br>+ <i>t</i> <sub>A</sub>   | -                                                              | ns   |
| ALE fall. edge to RdCS,<br>WrCS (no RW delay)                                          | t <sub>43</sub>        | CC  | $-6 + t_{A}$               | _                             | -6<br>+ <i>t</i> <sub>A</sub>        | -                                                              | ns   |
| Address float after<br>RdCS, WrCS (with RW<br>delay)                                   | t <sub>44</sub>        | CC  | _                          | 0                             | -                                    | 0                                                              | ns   |
| Address float after<br>RdCS, WrCS (no RW<br>delay)                                     | t <sub>45</sub>        | CC  | -                          | 25                            | -                                    | TCL                                                            | ns   |
| RdCS to Valid Data In (with RW delay)                                                  | t <sub>46</sub>        | SR  | -                          | $20 + t_{\rm C}$              | _                                    | 2TCL - 30<br>+ <i>t</i> <sub>C</sub>                           | ns   |
| RdCS to Valid Data In (no RW delay)                                                    | t <sub>47</sub>        | SR  | _                          | $45 + t_{\rm C}$              | _                                    | 3TCL - 30<br>+ <i>t</i> <sub>C</sub>                           | ns   |
| RdCS, WrCS Low Time<br>(with RW delay)                                                 | t <sub>48</sub>        | CC  | $38 + t_{\rm C}$           | _                             | 2TCL - 12<br>+ <i>t</i> <sub>C</sub> | _                                                              | ns   |
| RdCS, WrCS Low Time<br>(no RW delay)                                                   | t <sub>49</sub>        | CC  | $63 + t_{\rm C}$           | _                             | 3TCL - 12<br>+ <i>t</i> <sub>C</sub> | _                                                              | ns   |





### Figure 15 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE





Figure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE



# Table 19Demultiplexed Bus (Reduced Supply Voltage Range)<br/>(Operating Conditions apply)

ALE cycle time = 4 TCL +  $2t_A + t_C + t_F$  (100 ns at 20 MHz CPU clock without waitstates)

| Parameter                                          | Symbol                |    | Max. CPU Clock<br>= 20 MHz |                        | Variable (<br>1 / 2TCL = | Unit                    |    |
|----------------------------------------------------|-----------------------|----|----------------------------|------------------------|--------------------------|-------------------------|----|
|                                                    |                       |    | Min.                       | Max.                   | Min.                     | Max.                    |    |
| ALE high time                                      | <i>t</i> <sub>5</sub> | CC | $11 + t_A$                 | _                      | TCL - 14                 | _                       | ns |
|                                                    |                       |    |                            |                        | $+ t_A$                  |                         |    |
| Address setup to ALE                               | <i>t</i> <sub>6</sub> | CC | $5 + t_A$                  | -                      | TCL - 20                 | _                       | ns |
|                                                    |                       |    |                            |                        | $+ t_A$                  |                         |    |
| ALE falling edge to $\overline{RD}$ ,              | t <sub>8</sub>        | CC | $15 + t_A$                 | -                      | TCL - 10                 | _                       | ns |
| WR (with RW-delay)                                 |                       |    |                            |                        | $+ t_A$                  |                         |    |
| ALE falling edge to $\overline{RD}$ ,              | t <sub>9</sub>        | CC | $-10 + t_{A}$              | -                      | -10                      | _                       | ns |
| WR (no RW-delay)                                   |                       |    |                            |                        | $+ t_A$                  |                         |    |
| RD, WR low time                                    | t <sub>12</sub>       | CC | $34 + t_{C}$               | -                      | 2TCL - 16                | _                       | ns |
| (with RW-delay)                                    |                       |    |                            |                        | + t <sub>C</sub>         |                         |    |
| RD, WR low time                                    | t <sub>13</sub>       | CC | $59 + t_{\rm C}$           | -                      | 3TCL - 16                | -                       | ns |
| (no RW-delay)                                      |                       |    |                            |                        | + t <sub>C</sub>         |                         |    |
| RD to valid data in                                | t <sub>14</sub>       | SR | -                          | $22 + t_{\rm C}$       | _                        | 2TCL - 28               | ns |
| (with RW-delay)                                    |                       |    |                            |                        |                          | + t <sub>C</sub>        |    |
| RD to valid data in                                | t <sub>15</sub>       | SR | -                          | $47 + t_{\rm C}$       | _                        | 3TCL - 28               | ns |
| (no RW-delay)                                      |                       |    |                            |                        |                          | + <i>t</i> <sub>C</sub> |    |
| ALE low to valid data in                           | t <sub>16</sub>       | SR | -                          | 45 +                   | _                        | 3TCL - 30               | ns |
|                                                    |                       |    |                            | $t_{A} + t_{C}$        |                          | $+ t_{A} + t_{C}$       |    |
| Address to valid data in                           | t <sub>17</sub>       | SR | -                          | 57 +                   | _                        | 4TCL - 43               | ns |
|                                                    |                       |    |                            | $2t_{A} + t_{C}$       |                          | $+ 2t_{A} + t_{C}$      |    |
| Data hold after $\overline{\text{RD}}$ rising edge | t <sub>18</sub>       | SR | 0                          | _                      | 0                        | _                       | ns |
| Data float after RD rising                         | $t_{20}$              | SR | _                          | 36 +                   | _                        | 2TCL - 14               | ns |
| edge (with RW-delay <sup>1)</sup> )                | 20                    |    |                            | $2t_{A} + t_{F}^{(1)}$ |                          | $+ 22t_{A}$             |    |
|                                                    |                       |    |                            |                        |                          | $+ t_{\rm F}^{(1)}$     |    |
| Data float after RD rising                         | t <sub>21</sub>       | SR | _                          | 15 +                   | _                        | TCL - 10                | ns |
| edge (no RW-delay <sup>1)</sup> )                  |                       |    |                            | $2t_{A} + t_{F}^{(1)}$ |                          | $+ 22t_A$               |    |
|                                                    |                       |    |                            |                        |                          | $+ t_{\rm F}^{''}$      |    |
| Data valid to $\overline{WR}$                      | t <sub>22</sub>       | CC | $24 + t_{C}$               | -                      | 2TCL - 26                | -                       | ns |
|                                                    |                       |    |                            |                        | $+ t_{\rm C}$            |                         |    |



# Table 19Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)<br/>(Operating Conditions apply)

ALE cycle time = 4 TCL +  $2t_A + t_C + t_F$  (100 ns at 20 MHz CPU clock without waitstates)

| Parameter                                            | Symbol                    | Symbol Max. CPU Clock<br>= 20 MHz |             | Variable (<br>1 / 2TCL = 1          | Unit                             |    |
|------------------------------------------------------|---------------------------|-----------------------------------|-------------|-------------------------------------|----------------------------------|----|
|                                                      |                           | Min.                              | Max.        | Min.                                | Max.                             |    |
| Data float after RdCS<br>(no RW-delay) <sup>1)</sup> | <i>t</i> <sub>68</sub> SF | -                                 | $5 + t_{F}$ | -                                   | TCL - 20<br>+ $2t_A + t_F^{(1)}$ | ns |
| Address hold after<br>RdCS, WrCS                     | <i>t</i> <sub>55</sub> CC | $-16 + t_{\rm F}$                 | -           | -16 + <i>t</i> <sub>F</sub>         | -                                | ns |
| Data hold after WrCS                                 | <i>t</i> <sub>57</sub> CC | $9 + t_{F}$                       | _           | TCL - 16<br>+ <i>t</i> <sub>F</sub> | _                                | ns |

1) RW-delay and  $t_A$  refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising  $\overline{\text{RD}}$  edge. Therefore address changes before the end of  $\overline{\text{RD}}$  have no impact on read cycles.

3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).





## Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE