

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100t016f0008abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2016-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1100 series devices.

The document describes the characteristics of a superset of the XMC1100 series devices. For simplicity, the various device types are referred to by the collective term XMC1100 throughout this document.

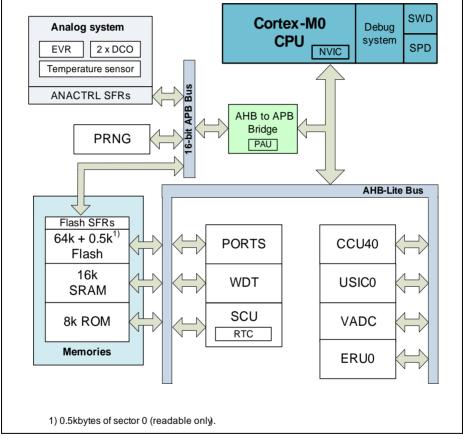
XMC[™]1000 Family User Documentation

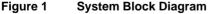
The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.


Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.



Summary of Features

1 Summary of Features

The XMC1100 devices are members of the XMC[™]1000 Family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1100 series devices are designed for general purpose applications.

CPU Subsystem

- CPU Core
 - High-performance 32-bit ARM Cortex-M0 CPU
 - Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set
 - Single cycle 32-bit hardware multiplier

Summary of Features

- Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1100 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1100 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1100 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes	
XMC1100-T016F0008	PG-TSSOP-16-8	8	16	
XMC1100-T016F0016	PG-TSSOP-16-8	16	16	
XMC1100-T016F0032	PG-TSSOP-16-8	32	16	
XMC1100-T016F0064	PG-TSSOP-16-8	64	16	
XMC1100-T016X0016	PG-TSSOP-16-8	16	16	
XMC1100-T016X0032	PG-TSSOP-16-8	32	16	
XMC1100-T016X0064	PG-TSSOP-16-8	64	16	
XMC1100-T038F0016	PG-TSSOP-38-9	16	16	
XMC1100-T038F0032	PG-TSSOP-38-9	32	16	
XMC1100-T038F0064	PG-TSSOP-38-9	64	16	
XMC1100-T038X0064	PG-TSSOP-38-9	64	16	
XMC1100-Q024F0008	PG-VQFN-24-19	8	16	
XMC1100-Q024F0016	PG-VQFN-24-19	16	16	
XMC1100-Q024F0032	PG-VQFN-24-19	32	16	
XMC1100-Q024F0064	PG-VQFN-24-19	64	16	
XMC1100-Q040F0016	PG-VQFN-40-13	16	16	

Table 1 Synopsis of XMC1100 Device Types

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

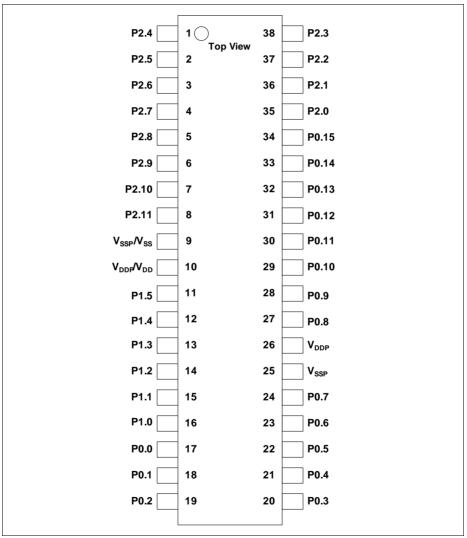


Figure 4 XMC1100 PG-TSSOP-38 Pin Configuration (top view)

XMC[™]1100 AB-Step XMC[™]1000 Family

General Device Information

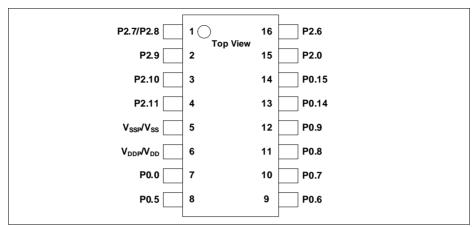


Figure 5 XMC1100 PG-TSSOP-16 Pin Configuration (top view)

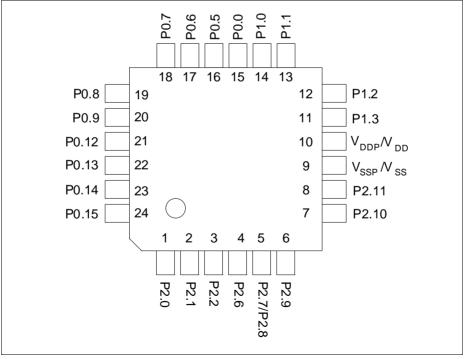


Figure 6 XMC1100 PG-VQFN-24 Pin Configuration (top view)

General Device Information

Table 6 Package Pin Mapping (cont d)							
Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes	
VDDP	15	10	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.	
VSSP	31	25	-	-	Power	I/O port ground	
VDDP	32	26	-	-	Power	I/O port supply	
VSSP	Exp. Pad	-	Exp. Pad	-	Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter.	

Table 6 Package Pin Mapping (cont'd)

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs	Inputs		
	ALT1	ALTn	Input	Input		
P0.0		MODA.OUT	MODC.INA			
Pn.y	MODA.OUT		MODA.INA	MODC.INB		

Table 9 Port I/O Functions

Function		Outputs					Inputs							
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40.OUT 0		USIC0_CH0. SELO0	USIC0_CH1. SELO0	CCU40.IN0C				USIC0_CH0. DX2A	USIC0_CH1. DX2A	
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40.OUT 1			SCU. VDROP	CCU40.IN1C						
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40.OUT 2		VADC0. EMUX02		CCU40.IN2C						
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40.OUT 3		VADC0. EMUX01		CCU40.IN3C						
P0.4				CCU40.OUT 1		VADC0. EMUX00	WWDT. SERVICE_O UT							
P0.5				CCU40.OUT 0										
P0.6				CCU40.OUT 0			USIC0_CH1. DOUT0	CCU40.IN0B				USIC0_CH1. DX0C		
P0.7				CCU40.OUT 1		USIC0_CH0. SCLKOUT	USIC0_CH1. DOUT0	CCU40.IN1B				USIC0_CH0. DX1C	USIC0_CH1. DX0D	USIC0_CH1 DX1C
P0.8				CCU40.OUT 2		USIC0_CH0. SCLKOUT	USIC0_CH1. SCLKOUT	CCU40.IN2B				USIC0_CH0. DX1B	USIC0_CH1. DX1B	
P0.9				CCU40.OUT 3		USIC0_CH0. SELO0	USIC0_CH1. SELO0	CCU40.IN3B				USIC0_CH0. DX2B	USIC0_CH1. DX2B	
P0.10						USIC0_CH0. SELO1	USIC0_CH1. SELO1					USIC0_CH0. DX2C	USIC0_CH1. DX2C	
P0.11				USIC0_CH0. MCLKOUT		USIC0_CH0. SELO2	USIC0_CH1. SELO2					USIC0_CH0. DX2D	USIC0_CH1. DX2D	
P0.12						USIC0_CH0. SELO3		CCU40.IN0A	CCU40.IN1A	CCU40.IN2A	CCU40.IN3A	USIC0_CH0. DX2E		
P0.13	WWDT. SERVICE_O UT					USIC0_CH0. SELO4						USIC0_CH0. DX2F		
P0.14						USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT					USIC0_CH0. DX0A	USIC0_CH0. DX1A	
P0.15						USIC0_CH0. DOUT0	USIC0_CH1. MCLKOUT					USIC0_CH0. DX0B		
P1.0		CCU40.OUT 0					USIC0_CH0. DOUT0					USIC0_CH0. DX0C		

Infineon

Data Sheet

XMC[™]1100 AB-Step XMC[™]1000 Family

Table 10 Hardware Controlled I/O Functions

Function		Outputs		Inputs	Pull Control					
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0. DOUT0		USIC0_CH0. HWIN0						
P1.1		USIC0_CH0. DOUT1		USIC0_CH0. HWIN1						
P1.2		USIC0_CH0. DOUT2		USIC0_CH0. HWIN2						
P1.3		USIC0_CH0. DOUT3		USIC0_CH0. HWIN3						
P1.4										
P1.5										
P1.6										
P2.0										
P2.1										
P2.2							CCU40.OUT3	CCU40.OUT3		
P2.3										
P2.4										

Infineon

XMC[™]1100 AB-Step XMC[™]1000 Family

25

Data Sheet

V1.7, 2016-08 Subject to Agreement on the Use of Product Information

Table 13 PN-Junction Characterisitics for positive Overload						
Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ov} = 5 mA, T _J = 115 °C				
Standard, High-current, AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 0.5 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.5 V				

Table 14 **PN-Junction Characterisitics for negative Overload**

Pad Type	I _{ον} = 5 mA, T _J = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 115 °C
Standard, High-current, AN/DIG_IN	$V_{\rm IN}$ = $V_{\rm SS}$ - 0.5 V	$V_{\rm IN} = V_{\rm SS}$ - 0.5 V

Table 16	Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
				Min. Max.			
Pin capacitance (digital inputs/outputs)	C _{IO}	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current9)	I _{OZP}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105 \text{ °C}$	
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	10)	
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	10)	
$\begin{tabular}{l} \hline \hline Maximum current out of \\ $V_{\rm SS}$ (TSSOP28/16, $VQFN24$) \end{tabular}$	I _{MVSS1}	SR	-	130	mA	10)	
$\begin{tabular}{l} \hline \hline \\ \hline Maximum current out of \\ V_{\rm SS} (TSSOP38, \\ VQFN40) \end{tabular}$	I _{MVSS2}	SR	-	260	mA	10)	

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.225 \text{ ns/pF} at 5 V supply voltage.$

6) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.288 \text{ ns/pF}$ at 3.3 V supply voltage.

7) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	S	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Supply voltage range (internal reference)	$V_{DD_int}SR$	2.0	-	3.0	V	$\begin{array}{l} SHSCFG.AREF = \\ 11_{B} \\ CALCTR.CALGN \\ STC = 0C_{H} \end{array}$	
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B	
Supply voltage range (external reference)	$V_{\rm DD_ext}{ m SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground	$V_{REFGND} SR$	V _{SSP} - 0.05	-	1.0	V	G0CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC	5			V		
Switched capacitance of an analog input	C_{AINS} CC	-	1.2	2	pF	$GNCTRxz.GAINy = 00_B$ (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	$C_{AINT}CC$	-	-	10	pF		
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF		

 Table 17
 ADC Characteristics (Operating Conditions apply)¹⁾

Table 17	ADC Characteristics (Operating Conditions apply) ¹⁾ (cont'd)
----------	---

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	_	Test Condition
Gain settings G _{IN} CC		1			-	$GNCTRxz.GAINy = 00_B (unity gain)$
			3		-	GNCTRxz.GAINy = 01 _B (gain g1)
			6		-	GNCTRxz.GAINy = 10 _B (gain g2)
			12		-	GNCTRxz.GAINy = 11 _B (gain g3)
Sample Time	t _{sample} CC	4	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V
		4	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 3.3 V
		30	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 2.0 V
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC	9		1 / f _{ADC}	2)	
Conversion time in 12-bit mode	<i>t</i> _{C12} CC		20		1 / f _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} \mathrm{CC}$	-	-	f _{ADC} / 43.5	-	1 sample pending
		-	-	f _{ADC} / 63.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC		18		1 / f _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 41.5	-	1 sample pending
		-	-	f _{ADC} / 59.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC		16		1 / <i>f</i> _{ADC}	2)

3.2.3 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Measurement time	t _M CC	-	-	10	ms	
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	_	115	°C	
Sensor Accuracy ¹⁾	$T_{\text{TSAL}} \operatorname{CC}$	-6	-	6	°C	$T_{\rm J}$ > 20°C
		-10	—	10	°C	$0^{\circ}C \le T_{J} \le 20^{\circ}C$
		-18	-	18	°C	$-25^{\circ}C \le T_{J} < 0^{\circ}C$
		-31	-	31	°C	$-40^{\circ}C \le T_{J} < -25^{\circ}C$
Start-up time after enabling	t _{TSSTE} SR	-	-	15	μS	

Table 18 Temperature Sensor Characteristics

1) The temperature sensor accuracy is independent of the supply voltage.

Parameter	Symbol	Values			Unit	Note /
		Min	Typ. ¹⁾	Max.		Test Condition
Sleep mode current	I _{DDPSD} CC	•	1.8	_	mA	32 / 64
Peripherals clock disabled			1.7	_	mA	24 / 48
Flash active f_{MCLK} / f_{PCLK} in MHz ⁵⁾			1.6	-	mA	16 / 32
JMCLK / JPCLK III WII Z			1.5	-	mA	8 / 16
			1.4	-	mA	1/1
Sleep mode current Peripherals clock disabled	I _{DDPSR} CC	_	1.2	-	mA	32 / 64
			1.1	-	mA	24 / 48
Flash powered down f_{MCLK}/f_{PCLK} in MHz ⁶⁾			1.0	-	mA	16 / 32
			0.8	-	mA	8 / 16
			0.7	-	mA	1/1
Deep Sleep mode current ⁷⁾	I _{DDPDS} CC	_	0.24	-	mA	
Wake-up time from Sleep to Active mode ⁸⁾	t _{SSA} CC	_	6	-	cycles	
Wake-up time from Deep Sleep to Active mode ⁹⁾	t _{DSA} CC	-	280	-	μsec	

Table 19Power Supply Parameters; VVDDP= 5V

1) The typical values are measured at $T_A = +25$ °C and $V_{DDP} = 5$ V.

2) CPU and all peripherals clock enabled, Flash is in active mode.

3) CPU enabled, all peripherals clock disabled, Flash is in active mode.

4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU in sleep, Flash is in active mode.

6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.

7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

8) CPU in sleep, Flash is in active mode during sleep mode.

9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

3.3 AC Parameters

3.3.1 Testing Waveforms

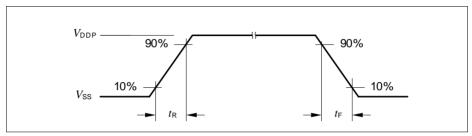


Figure 13 Rise/Fall Time Parameters

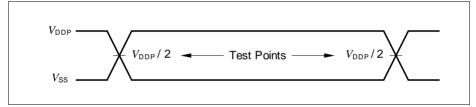


Figure 14 Testing Waveform, Output Delay

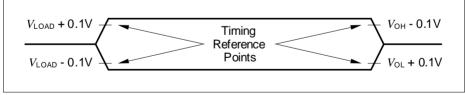
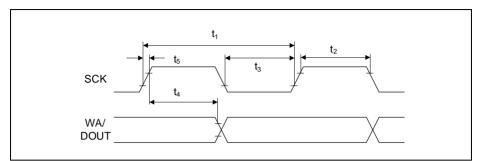



Figure 15 Testing Waveform, Output High Impedance

Figure 21	USIC IIS Master	Transmitter Timing	1
-----------	-----------------	--------------------	---

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns		
Clock HIGH	t ₇ SR	0.35 x	-	-	ns		
		t _{6min}					
Clock Low	t ₈ SR	0.35 x	-	-	ns		
		t _{6min}					
Set-up time	t ₉ SR	0.2 x	-	-	ns		
		t _{6min}					
Hold time	t ₁₀ SR	10	-	-	ns		

Table 32	USIC IIS Slave	e Receiver T	iming
----------	----------------	--------------	-------

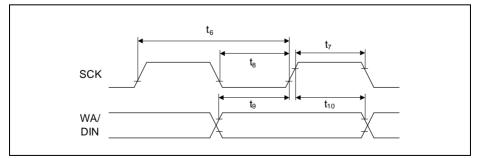


Figure 22 USIC IIS Slave Receiver Timing

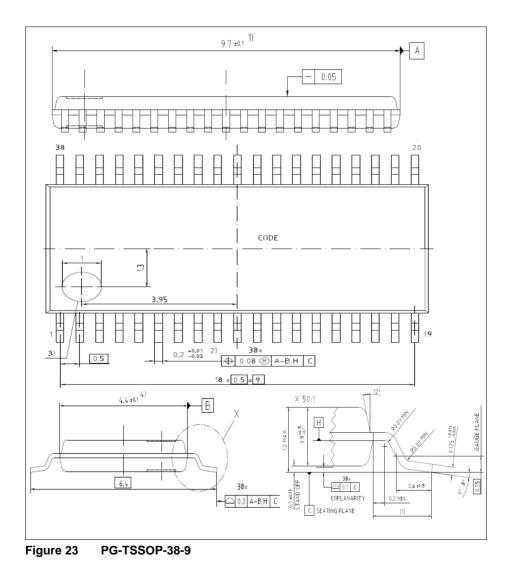
Package and Reliability

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.


If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 Package Outlines

Quality Declaration

5 Quality Declaration

Table 34 shows the characteristics of the quality parameters in the XMC1100.

Table 34 Quality Parameters

Parameter	Symbol	Limit V	alues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	$V_{\rm CDM}$ SR	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{ m SDR}$ SR	-	260	°C	Profile according to JEDEC J-STD-020D