

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100t016f0064abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

- Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1100 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1100 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1100 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1100-T016F0008	PG-TSSOP-16-8	8	16
XMC1100-T016F0016	PG-TSSOP-16-8	16	16
XMC1100-T016F0032	PG-TSSOP-16-8	32	16
XMC1100-T016F0064	PG-TSSOP-16-8	64	16
XMC1100-T016X0016	PG-TSSOP-16-8	16	16
XMC1100-T016X0032	PG-TSSOP-16-8	32	16
XMC1100-T016X0064	PG-TSSOP-16-8	64	16
XMC1100-T038F0016	PG-TSSOP-38-9	16	16
XMC1100-T038F0032	PG-TSSOP-38-9	32	16
XMC1100-T038F0064	PG-TSSOP-38-9	64	16
XMC1100-T038X0064	PG-TSSOP-38-9	64	16
XMC1100-Q024F0008	PG-VQFN-24-19	8	16
XMC1100-Q024F0016	PG-VQFN-24-19	16	16
XMC1100-Q024F0032	PG-VQFN-24-19	32	16
XMC1100-Q024F0064	PG-VQFN-24-19	64	16
XMC1100-Q040F0016	PG-VQFN-40-13	16	16
XMC1100-Q024F0064 XMC1100-Q040F0016	PG-VQFN-24-19 PG-VQFN-40-13	64 16	16 16

Table 1 Synopsis of XMC1100 Device Types

Summary of Features

Table 1Synopsis of XMC1100 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1100-Q040F0032	PG-VQFN-40-13	32	16
XMC1100-Q040F0064	PG-VQFN-40-13	64	16

1.3 Device Type Features

The following table lists the available features per device type.

Table 2 Features of XMC1100 Device Types¹⁾

Derivative	ADC channel				
XMC1100-T016	6				
XMC1100-T038	12				
XMC1100-Q024	8				
XMC1100-Q040	12				

1) Features that are not included in this table are available in all the derivatives

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0CH5	-
PG-TSSOP-38	CH0CH7	CH1, CH5 CH7
PG-VQFN-24	CH0CH7	-
PG-VQFN-40	CH0CH7	CH1, CH5 CH7

1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : 1000 0F00_H (MSB) - 1000 0F1B_H (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

Summary of Features

Derivative	Value	Marking					
XMC1100-T016F0008	00011032 01CF00FF 00001F37 00000000 00000C00 00001000 00003000 201ED083 _H	AB					
XMC1100-T016F0016	00011032 01CF00FF 00001F37 00000000 00000C00 00001000 00005000 201ED083 _H	AB					
XMC1100-T016F0032	AB						
XMC1100-T016F0064	MC1100-T016F0064 00011032 01CF00FF 00001F37 00000000 00000C00 00001000 00011000 201ED083 _H						
XMC1100-T016X0016	00011033 01CF00FF 00001F37 0000000 00000C00 00001000 00005000 201ED083 _H	AB					
XMC1100-T016X0032	AB						
XMC1100-T016X0064	00011033 01CF00FF 00001F37 0000000 00000C00 00001000 00011000 201ED083 _H	AB					
XMC1100-T038F0016	00011012 01CF00FF 00001F37 00000000 00000C00 00001000 00005000 201ED083 _H	AB					
XMC1100-T038F0032	00011012 01CF00FF 00001F37 00000000 00000C00 00001000 00009000 201ED083 _H	AB					
XMC1100-T038F0064	00011012 01CF00FF 00001F37 00000000 00000C00 00001000 00011000 201ED083 _H	AB					
XMC1100-T038X0064	00011013 01CF00FF 00001F37 00000000 00000C00 00001000 00011000 201ED083 _H	AB					
XMC1100-Q024F0008	00011062 01CF00FF 00001F37 00000000 00000C00 00001000 00003000 201ED083 _H	AB					
XMC1100-Q024F0016	00011062 01CF00FF 00001F37 00000000 00000C00 00001000 00005000 201ED083 _H	AB					
XMC1100-Q024F0032	00011062 01CF00FF 00001F37 00000000 00000C00 00001000 00009000 201ED083 _H	AB					
XMC1100-Q024F0064	00011062 01CF00FF 00001F37 00000000 00000C00 00001000 00011000 201ED083 _H	AB					
XMC1100-Q040F0016	00011042 01CF00FF 00001F37 0000000 00000C00 00001000 00005000 201ED083 _H	AB					

Table 4 XMC1100 Chip Identification Number

XMC[™]1100 AB-Step XMC[™]1000 Family

General Device Information

Figure 5 XMC1100 PG-TSSOP-16 Pin Configuration (top view)

Figure 6 XMC1100 PG-VQFN-24 Pin Configuration (top view)

3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Ambient Temperature	$T_{A} \operatorname{SR}$	-40	-	85	°C	Temp. Range F
		-40	-	105	°C	Temp. Range X
Digital supply voltage ¹⁾	$V_{\sf DDP}\sf SR$	1.8	-	5.5	V	
MCLK Frequency	$f_{\rm MCLK}{\rm CC}$	-	-	33.2	MHz	CPU clock
PCLK Frequency	$f_{PCLK}CC$	-	-	66.4	MHz	Peripherals clock
Short circuit current of digital outputs	I _{SC} SR	-5	-	5	mA	
Absolute sum of short circuit currents of the device	$\Sigma I_{SC_D} SR$	-	-	25	mA	

Table 15	Operating	Conditions	Parameters
	oporaning	•••••••••	i al'alliotoi o

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

3.2 DC Parameters

3.2.1 Input/Output Characteristics

- Table 16 provides the characteristics of the input/output pins of the XMC1100.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbol		Limit \	/alues	Unit	Test Conditions	
			Min.	Max.			
Output low voltage on port pins	V_{OLP}	СС	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)	
(with standard pads)			-	0.4	V	$I_{\rm OL}$ = 5 mA (5 V) $I_{\rm OL}$ = 3.5 mA (3.3 V)	
Output low voltage on high current pads	V_{OLP1}	СС	_	1.0	V	$I_{\rm OL}$ = 50 mA (5 V) $I_{\rm OL}$ = 25 mA (3.3 V)	
			-	0.32	V	I _{OL} = 10 mA (5 V)	
			-	0.4	V	I _{OL} = 5 mA (3.3 V)	
Output high voltage on port pins	V _{OHP}	CC	V _{DDP} - 1.0	_	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)	
(with standard pads)			V _{DDP} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)	
Output high voltage on high current pads	V _{OHP1}	CC	V _{DDP} - 0.32	_	V	I _{OH} = -6 mA (5 V)	
			V _{DDP} - 1.0	_	V	I _{OH} = -8 mA (3.3 V)	
			V _{DDP} - 0.4	_	V	I _{OH} = -4 mA (3.3 V)	
Input low voltage on port pins (Standard Hysteresis)	V_{ILPS}	SR	_	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	
Input high voltage on port pins (Standard Hysteresis)	V_{IHPS}	SR	$0.7 imes V_{ m DDP}$	_	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage range (internal reference)	$V_{DD_int}SR$	2.0	_	3.0	V	SHSCFG.AREF = 11_B CALCTR.CALGN STC = $0C_H$
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B
Supply voltage range (external reference)	$V_{\rm DD_ext}{ m SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V	
Auxiliary analog reference ground	$V_{REFGND}SR$	V _{SSP} - 0.05	-	1.0	V	G0CH0
Internal reference voltage (full scale value)	V _{REFINT} CC		5	•	V	
Switched capacitance of an analog input	C_{AINS} CC	-	1.2	2	pF	$GNCTRxz.GAINy = 00_B$ (unity gain)
		-	1.2	2	pF	$GNCTRxz.GAINy = 01_B (gain g1)$
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)
Total capacitance of an analog input	C_{AINT} CC	-	-	10	pF	
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF	

 Table 17
 ADC Characteristics (Operating Conditions apply)¹⁾

Table 17 Abb characteristics (operating conditions apply) (contra)						
Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending
		-	-	f _{ADC} / 54.5	-	2 samples pending
RMS noise ⁴⁾	EN _{RMS} CC	-	1.5	-	LSB 12	DC input, $V_{DD} = 5.0 \text{ V},$ $V_{AIN} = 2.5 \text{ V},$ 25°C
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12	
INL error	EA _{INL} CC	-	±4.0	-	LSB 12	
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_{B} (calibrated)
Gain error with internal reference ⁵⁾	EA_{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C
		-	±2.0	-	%	SHSCFG.AREF = $1X_B$ (calibrated), $0^{\circ}C - 85^{\circ}C$
Offset error	$EA_{OFF}CC$	-	±8.0	-	mV	Calibrated, $V_{\rm DD} = 5.0 \text{ V}$

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

1) The parameters are defined for ADC clock frequency f_{SH} = 32MHz.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

4) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5$ LSB12, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7$ dB.

5) Includes error from the reference voltage.

3.2.4 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /
		Min	Typ. ¹⁾	Max.		Test Condition
		•				
Active mode current Peripherals enabled $f_{\rm MCLK}/f_{\rm PCLK}$ in $\rm MHz^{2)}$	I _{DDPAE} CC	-	8.4	11.0	mA	32 / 64
		-	7.3	-	mA	24 / 48
		_	6.1	-	mA	16 / 32
		_	5.1	-	mA	8 / 16
		_	3.7	-	mA	1/1
Active mode current Peripherals disabled f_{MCLK}/f_{PCLK} in MHz ³⁾	I _{DDPAD} CC	_	4.7	-	mA	32 / 64
		_	4.1	-	mA	24 / 48
		_	3.3	-	mA	16 / 32
		_	2.6	-	mA	8 / 16
		_	1.5	-	mA	1/1
Active mode current	I _{DDPAR} CC	_	6.3	-	mA	32 / 64
Code execution from RAM		_	5.4	-	mA	24 / 48
f_{MCLK}/f_{PCLK} in MHz		_	4.6	-	mA	16 / 32
JMOLK JFOLK		_	3.8	-	mA	8 / 16
		_	3.0	-	mA	1/1
Sleep mode current	$I_{\rm DDPSE}{\rm CC}$	-	5.9	-	mA	32 / 64
Peripherals clock enabled			5.4	-	mA	24 / 48
JMCLK / JPCLK III IVITIZ /			4.8	-	mA	16 / 32
			4.3	-	mA	8 / 16
			3.7	-	mA	1/1

Table 19Power Supply Parameters; VVDDP= 5V

Figure 12 shows typical graphs for sleep mode current for $V_{DDP} = 5V$, $V_{DDP} = 3.3V$, $V_{DDP} = 1.8V$ across different clock frequencies.

Figure 12 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSR} over supply voltage V_{DDP} for different clock frequencies

3.3.4 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
SWDCLK high time	t ₁ SR	50	-	500000	ns	-
SWDCLK low time	t ₂ SR	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-
SWDIO output valid time	t ₅ CC	-	-	68	ns	C _L = 50 pF
after SWDCLK rising edge		-	-	62	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns	

Table 25	SWD Interface Timing Parameters (Operating Conditions apply)
	one interface rinning raranetere (operating contaitone appry)

52

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor	Sample Clocks 0 _B	Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark				
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option (0.81 µs) for the effective decision time is less robust.				

Table 26 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 27	USIC	SSC	Master	Mode	Timing
----------	------	-----	--------	------	--------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
SCLKOUT master clock period	t _{CLK} CC	62.5	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	80	-	_	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	-	_	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	80	-	_	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	_	_	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 19 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 29	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Table 30 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 20 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{DDP} \ge 3 \ V$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
	-			t _{1min}		

Table 31 USIC IIS Master Transmitter Timing

Package and Reliability

4.2 Package Outlines

Package and Reliability

Figure 25 PG-VQFN-24-19