

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1100t038f0016abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2016-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC1100 Data Sheet

Revision History: V1.7 2016-08

Previous V	/ersion: V1.6
Page	Subjects
many	Added XMC [™] trademark
Page 23	Removed ADC channels from Port I/O Functions table, which are not available in XMC1100 (G1CH0, G1CH2, G1CH3, G1CH4).
Page 36	Removed auxiliary V_{REFGND} for G1CH0, as this channel is not available in XMC1100.
Page 36	Adjusted ADC sample time and sample rate to configurable limits.
Page 46	 Flash Memory Parameters Table: Erase time per page parameter is renamed to Erase time per page / sector. Erase cycles parameter is renamed to include test condition of sum of page and sector erase cycles. Added parameter for fixed wait states configuration.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[®], CoreSightTM, ETMTM, Embedded Trace MacrocellTM and Embedded Trace BufferTM are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

Derivative	Value	Marking							
XMC1100-Q040F0032	00011042 01CF00FF 00001F37 0000000 00000C00 00001000 00009000 201ED083 _H	AB							
XMC1100-Q040F0064	00011042 01CF00FF 00001F37 0000000 00000C00 00001000 00011000 201ED083 _H	AB							

Table 4 XMC1100 Chip Identification Number (cont'd)

General Device Information

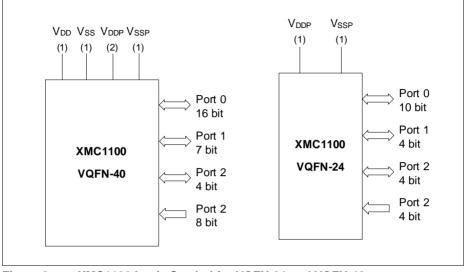


Figure 3 XMC1100 Logic Symbol for VQFN-24 and VQFN-40

General Device Information

Table 6 Package Pin Mapping (cont'd)											
Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes					
P0.13	38	32	22	-	STD_INOUT						
P0.14	39	33	23	13	STD_INOUT						
P0.15	40	34	24	14	STD_INOUT						
P1.0	22	16	14	-	High Current						
P1.1	21	15	13	-	High Current						
P1.2	20	14	12	-	High Current						
P1.3	19	13	11	-	High Current						
P1.4	18	12	-	-	High Current						
P1.5	17	11	-	-	High Current						
P1.6	16	-	-	-	STD_INOUT						
P2.0	1	35	1	15	STD_INOUT/ AN						
P2.1	2	36	2	-	STD_INOUT/ AN						
P2.2	3	37	3	-	STD_IN/AN						
P2.3	4	38	-	-	STD_IN/AN						
P2.4	5	1	-	-	STD_IN/AN						
P2.5	6	2	-	-	STD_IN/AN						
P2.6	7	3	4	16	STD_IN/AN						
P2.7	8	4	5	1	STD_IN/AN						
P2.8	9	5	5	1	STD_IN/AN						
P2.9	10	6	6	2	STD_IN/AN						
P2.10	11	7	7	3	STD_INOUT/ AN						
P2.11	12	8	8	4	STD_INOUT/ AN						
VSS	13	9	9	5	Power	Supply GND, ADC reference GND					
VDD	14	10	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage					

Table 6 Package Pin Mapping (cont'd)

Table 9 Port I/O Functions

Function	on Outputs						Inputs							
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input	Input	Input	Input	Input	Input	Input
P1.1	VADC0. EMUX00	CCU40.OUT 1				USIC0_CH0. DOUT0	USIC0_CH1. SELO0					USIC0_CH0. DX0D	USIC0_CH0. DX1D	USIC0_CH1 DX2E
P1.2	VADC0. EMUX01	CCU40.OUT 2					USIC0_CH1. DOUT0					USIC0_CH1. DX0B		
P1.3	VADC0. EMUX02	CCU40.OUT 3				USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0					USIC0_CH1. DX0A	USIC0_CH1. DX1A	
P1.4	VADC0. EMUX10	USIC0_CH1. SCLKOUT				USIC0_CH0. SELO0	USIC0_CH1. SELO1					USIC0_CH0. DX5E	USIC0_CH1. DX5E	
P1.5	VADC0. EMUX11	USIC0_CH0. DOUT0				USIC0_CH0. SELO1	USIC0_CH1. SELO2					USIC0_CH1. DX5F		
P1.6	VADC0. EMUX12	USIC0_CH1. DOUT0		USIC0_CH0. SCLKOUT		USIC0_CH0. SELO2	USIC0_CH1. SELO3			USIC0_CH0. DX5F				
P2.0	ERU0. PDOUT3	CCU40.OUT 0	ERU0. GOUT3			USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT		VADC0. G0CH5		ERU0.0B0	USIC0_CH0. DX0E	USIC0_CH0. DX1E	USIC0_CH1 DX2F
P2.1	ERU0. PDOUT2	CCU40.OUT 1	ERU0. GOUT2			USIC0_CH0. DOUT0	USIC0_CH1. SCLKOUT		VADC0. G0CH6		ERU0.1B0	USIC0_CH0. DX0F	USIC0_CH1. DX3A	USIC0_CH1 DX4A
P2.2									VADC0. G0CH7		ERU0.0B1	USIC0_CH0. DX3A	USIC0_CH0. DX4A	USIC0_CH1 DX5A
P2.3									VADC0. G1CH5		ERU0.1B1	USIC0_CH0. DX5B	USIC0_CH1. DX3C	USIC0_CH1 DX4C
P2.4									VADC0. G1CH6		ERU0.0A1	USIC0_CH0. DX3B	USIC0_CH0. DX4B	USIC0_CH1 DX5B
P2.5									VADC0. G1CH7		ERU0.1A1	USIC0_CH0. DX5D	USIC0_CH1. DX3E	USIC0_CH1 DX4E
P2.6									VADC0. G0CH0		ERU0.2A1	USIC0_CH0. DX3E	USIC0_CH0. DX4E	USIC0_CH1 DX5D
P2.7									VADC0. G1CH1		ERU0.3A1	USIC0_CH0. DX5C	USIC0_CH1. DX3D	USIC0_CH1 DX4D
P2.8									VADC0. G0CH1		ERU0.3B1	USIC0_CH0. DX3D	USIC0_CH0. DX4D	USIC0_CH1 DX5C
P2.9									VADC0. G0CH2		ERU0.3B0	USIC0_CH0. DX5A	USIC0_CH1. DX3B	USIC0_CH1 DX4B
P2.10	ERU0. PDOUT1	CCU40.OUT 2	ERU0. GOUT1				USIC0_CH1. DOUT0		VADC0. G0CH3		ERU0.2B0	USIC0_CH0. DX3C	USIC0_CH0. DX4C	USIC0_CH1 DX0F
P2.11	ERU0. PDOUT0	CCU40.OUT 3	ERU0. GOUT0			USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0		VADC0. G0CH4		ERU0.2B1	USIC0_CH1. DX0E	USIC0_CH1. DX1E	

XMC[™]1100 AB-Step XMC[™]1000 Family

24

Data Sheet

Table 10 Hardware Controlled I/O Functions

Function		Outputs		Inputs	Pull Control					
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0										
P0.1										
P0.2										
P0.3										
P0.4										
P0.5										
P0.6										
P0.7										
P0.8										
P0.9										
P0.10										
P0.11										
P0.12										
P0.13										
P0.14										
P0.15										
P1.0		USIC0_CH0. DOUT0		USIC0_CH0. HWIN0						
P1.1		USIC0_CH0. DOUT1		USIC0_CH0. HWIN1						
P1.2		USIC0_CH0. DOUT2		USIC0_CH0. HWIN2						
P1.3		USIC0_CH0. DOUT3		USIC0_CH0. HWIN3						
P1.4										
P1.5										
P1.6										
P2.0										
P2.1										
P2.2							CCU40.OUT3	CCU40.OUT3		
P2.3										
P2.4										

Infineon

XMC[™]1100 AB-Step XMC[™]1000 Family

25

Data Sheet

V1.7, 2016-08 Subject to Agreement on the Use of Product Information

Table 10 Hardware Controlled I/O Functions

Function	Outputs			Inputs		Pull Control				
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P2.5										
P2.6							CCU40.OUT3	CCU40.OUT3		
P2.7							CCU40.OUT3	CCU40.OUT3		
P2.8							CCU40.OUT2	CCU40.OUT2		
P2.9							CCU40.OUT2	CCU40.OUT2		
P2.10										
P2.11										

Infineon

3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1100.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1100 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1100 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1100 is designed in.

3.2 DC Parameters

3.2.1 Input/Output Characteristics

- Table 16 provides the characteristics of the input/output pins of the XMC1100.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			Min.	Max.		
Output low voltage on port pins	V_{OLP}	CC	-	1.0	V	I_{OL} = 11 mA (5 V) I_{OL} = 7 mA (3.3 V)
(with standard pads)			-	0.4	V	I_{OL} = 5 mA (5 V) I_{OL} = 3.5 mA (3.3 V)
Output low voltage on high current pads	V_{OLP1}	СС	-	1.0	V	$I_{OL} = 50 \text{ mA} (5 \text{ V})$ $I_{OL} = 25 \text{ mA} (3.3 \text{ V})$
			—	0.32	V	I _{OL} = 10 mA (5 V)
			—	0.4	V	I _{OL} = 5 mA (3.3 V)
Output high voltage on port pins	V_{OHP}	CC	V _{DDP} - 1.0	_	V	$I_{\rm OH}$ = -10 mA (5 V) $I_{\rm OH}$ = -7 mA (3.3 V)
(with standard pads)			V _{DDP} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)
Output high voltage on high current pads	V _{OHP1}	₁ CC	V _{DDP} - 0.32	-	V	I _{OH} = -6 mA (5 V)
			V _{DDP} - 1.0	_	V	I _{OH} = -8 mA (3.3 V)
			V _{DDP} - 0.4	-	V	I _{OH} = -4 mA (3.3 V)
Input low voltage on port pins (Standard Hysteresis)	V _{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)
Input high voltage on port pins (Standard Hysteresis)	V _{IHPS}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V)

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

Table 16	Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbo	bl	Limit	Values	Unit	Test Conditions	
				Min. Max.			
Pin capacitance (digital inputs/outputs)	C _{IO}	СС	-	10	pF		
Pull-up resistor on port pins	R _{PUP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current9)	I _{OZP}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105 \text{ °C}$	
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	10)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	10)	
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	10)	
$\begin{tabular}{l} \hline \hline Maximum current out of \\ $V_{\rm SS}$ (TSSOP28/16, $VQFN24$) \end{tabular}$	I _{MVSS1}	SR	-	130	mA	10)	
$\begin{tabular}{l} \hline \hline \\ \hline Maximum current out of \\ V_{\rm SS} (TSSOP38, \\ VQFN40) \end{tabular}$	I _{MVSS2}	SR	-	260	mA	10)	

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.150 ns/pF at 5 V supply voltage.

3) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

4) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

5) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.225 \text{ ns/pF} at 5 V supply voltage.$

6) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.288 \text{ ns/pF}$ at 3.3 V supply voltage.

7) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.588 ns/pF at 1.8 V supply voltage.

Table 17	ADC Characteristics (Operating Conditions apply) ¹⁾ (cont'd)
----------	---

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.	_		
Gain settings	$G_{\sf IN} {\sf CC}$		1	1	-	$GNCTRxz.GAINy = 00_B (unity gain)$	
			3		-	GNCTRxz.GAINy = 01 _B (gain g1)	
			6		-	GNCTRxz.GAINy = 10 _B (gain g2)	
			12		-	GNCTRxz.GAINy = 11 _B (gain g3)	
Sample Time	t _{sample} CC	4	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 5.0 V	
		4	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 3.3 V	
		30	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DD}$ = 2.0 V	
Sigma delta loop hold time	t _{SD_hold} CC	20	-	-	μS	Residual charge stored in an active sigma delta loop remains available	
Conversion time in fast compare mode	t _{CF} CC		9		1 / f _{ADC}	2)	
Conversion time in 12-bit mode	<i>t</i> _{C12} CC		20		1 / f _{ADC}	2)	
Maximum sample rate in 12-bit mode ³⁾	$f_{C12} \mathrm{CC}$	-	-	f _{ADC} / 43.5	-	1 sample pending	
		-	-	f _{ADC} / 63.5	-	2 samples pending	
Conversion time in 10-bit mode	<i>t</i> _{C10} CC		18		1 / f _{ADC}	2)	
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 41.5	-	1 sample pending	
		-	-	f _{ADC} / 59.5	-	2 samples pending	
Conversion time in 8-bit mode	t _{C8} CC		16		1 / <i>f</i> _{ADC}	2)	

3.2.4 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /
		Min	Typ. ¹⁾	Max.		Test Condition
		•				
Active mode current	$I_{\rm DDPAE}{ m CC}$	-	8.4	11.0	mA	32 / 64
Peripherals enabled $f_{\rm MCLK}$ / $f_{\rm PCLK}$ in MHz ²⁾		-	7.3	-	mA	24 / 48
		_	6.1	-	mA	16 / 32
		_	5.1	-	mA	8 / 16
		-	3.7	-	mA	1/1
Active mode current Peripherals disabled f_{MCLK}/f_{PCLK} in MHz ³⁾	I _{DDPAD} CC	_	4.7	-	mA	32 / 64
		-	4.1	-	mA	24 / 48
		_	3.3	-	mA	16 / 32
		_	2.6	_	mA	8 / 16
		_	1.5	-	mA	1/1
Active mode current	I _{DDPAR} CC	_	6.3	_	mA	32 / 64
Code execution from RAM		_	5.4	_	mA	24 / 48
Flash is powered down f_{MCLK} / f_{PCLK} in MHz		_	4.6	-	mA	16 / 32
JMCLK / JPCLK III IVII 12		_	3.8	-	mA	8 / 16
		_	3.0	-	mA	1/1
Sleep mode current	I _{DDPSE} CC	-	5.9	-	mA	32 / 64
Peripherals clock enabled			5.4	-	mA	24 / 48
$f_{\sf MCLK}/f_{\sf PCLK}$ in $\sf MHz^{4)}$			4.8	-	mA	16 / 32
			4.3	_	mA	8 / 16
			3.7	_	mA	1/1

Table 19Power Supply Parameters; VVDDP= 5V

Table 20 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition
		Тур.		
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ¹⁾
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ²⁾
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 1 ³⁾
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁴⁾
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 1 ⁵⁾
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 16)

Table 20 Typical Active Current Consumption

1) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

2) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

3) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

4) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle

 Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s

6) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.2.5 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Erase Time per page / sector	t _{ERASE} CC	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μS	
Wake-Up time	t _{WU} CC	-	32.2	-	μs	
Read time per word	t _a CC	-	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	N _{WSFLASH} CC	0	0	0		$f_{\rm MCLK} = 8 \rm MHz$
		0	1	1		$f_{\rm MCLK} = 16 \rm MHz$
		1	1.3	2		$f_{\rm MCLK} = 32 \rm MHz$
Fixed Flash Wait States configured in bit NVM_NVMCONF.WS	N _{FWSFLASH} SR	0	0	1		NVM_CONFIG1 .FIXWS = 1_B , $f_{MCLK} \le 16$ MHz
		1	1	1		NVM_CONFIG1 .FIXWS = 1_B , 16 MHz < f_{MCLK} \leq 32 MHz
Erase Cycles	N _{ECYC} CC	-	-	5*10 ⁴	cycles	Sum of page and sector erase cycles
Total Erase Cycles	N _{TECYC} CC	-	-	2*10 ⁶	cycles	

Table 21 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

Table 22	Power-Up and Supply Monitoring Parameters (Operating Conditions
	apply) ¹⁾ (cont'd)

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
V_{DDP} brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
Start-up time from power-on reset	t _{SSW} SR	-	320	-	μs	Time to the first user code instruction in all start-up modes ⁴⁾
BMI program time	t _{BMI} SR	-	8.25	_	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

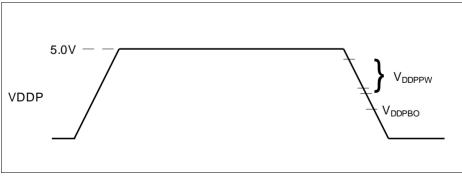


Figure 16 Supply Threshold Parameters

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 27	USIC SSC	Master	Mode	Timing
----------	----------	--------	------	--------

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
SCLKOUT master clock period	t _{CLK} CC	62.5	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	80	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	-	-	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	80	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	-	-	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 29	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Package and Reliability

4 Package and Reliability

The XMC1100 is a member of the XMC[™]1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

 Table 33 provides the thermal characteristics of the packages used in XMC1100.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad Dimensions	$Ex \times Ey$	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
	CC	-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance Junction-Ambient	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-81)	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-131)	

 Table 33
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1100 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

61

Package and Reliability

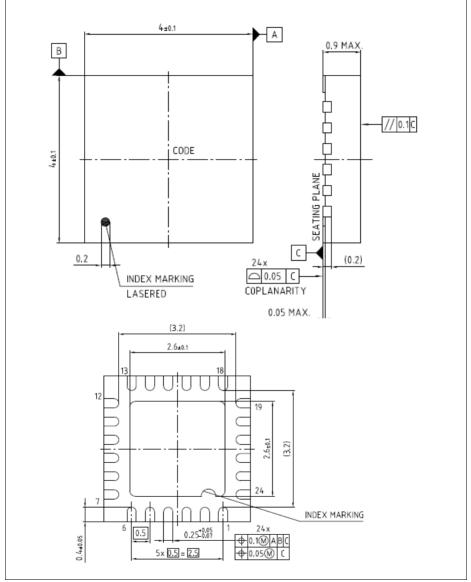


Figure 25 PG-VQFN-24-19