

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c51rd2-mie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PDIL40 PLCC44 VQFP44 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RA2	0	0	256	512	32
TS80C51RD2	0	0	768	1024	32
TS83C51RB2	16k	0	256	512	32
TS83C51RC2	32k	0	256	512	32
TS83C51RD2	64k	0	768	1024	32
TS87C51RB2	0	16k	256	512	32
TS87C51RC2	0	32k	256	512	32
TS87C51RD2	0	64k	768	1024	32

PLCC68 VQFP64 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RD2	0	0	768	1024	48
TS83C51RD2	64k	0	768	1024	48
TS87C51RD2	0	64k	768	1024	48

3. Block Diagram

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Table 1. All SFRs with their address and their reset value

	Bit addressable	Non Bit addressable										
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F				
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		F			
F0h	B 0000 0000								F			
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		E			
E0h	ACC 0000 0000								E			
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		D			
D0h	PSW 0000 0000								D			
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			C			
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C			
B8h	IP X000 000	SADEN 0000 0000							B			
B0h	P3 1111 1111							IPH X000 0000	В			
A8h	IE 0000 0000	SADDR 0000 0000							A			
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A			
98h	SCON 0000 0000	SBUF XXXX XXXX							91			
90h	P1 1111 1111								9			
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	81			
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	8			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F				

reserved

	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56
PSEN	67	55
EA/VPP	2	58
XTAL1	49	38
XTAL2	48	37
P4.0	20	11
P4.1	24	15
P4.2	26	17
P4.3	44	33
P4.4	46	35
P4.5	50	39
P4.6	53	42
P4.7	57	46
P5.0	60	49
P5.1	62	51
P5.2	63	52
P5.3	7	62
P5.4	8	63
P5.5	10	1
P5.6	13	4
P5.7	16	7

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 004000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR #DEST	; address of SOURCE ; switch data pointers : address of DEST
0003 90A000 0008 0008 05A2	LOOP: INC AUXR1	; switch data pointers
000A E0	MOVX A, @DPTR	; get a byte from SOURCE
000B A3	INC DPTR	; increment SOURCE address
000C 05A2	INC AUXRI	; switch data pointers
000E F0	MOVX @DPTR,A	; write the byte to DEST
000F A3	INC DPTR	: increment DEST address
0010 70F6	JNZ LOOP	; check for 0 terminator
0012 05A2	INC AUXR1	; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Table 12	2. CCAPnH:	PCA Modu	es Capture/C	Compare	Registers	High
----------	------------	----------	--------------	---------	-----------	------

CCAPnH Address n = 0 - 4	CCAP0H=0FAH CCAP1H=0FBH CCAP2H=0FCH CCAP3H=0FDH CCAP3H=0FEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 13. CCAPnL: PCA Modules Capture/Compare Registers Low

CCAPnL Address n = 0 - 4	CCAP0L=0EAH CCAP1L=0EBH CCAP2L=0ECH CCAP3L=0EDH CCAP4L=0EEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 14. CH: PCA Counter High

CH Address 0F9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 15. CL: PCA Counter Low

CL Address 0E9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

6.5.4. Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 12 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 12. PCA PWM Mode

6.5.5. PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 10 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

Table 16. SCON Register

SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI				
Bit Number	Bit Mnemonic			Descrip	tion						
7	FE	Framing Error bit Clear to reset the Set by hardware SMOD0 must be	(SMOD0=1) e error state, not cle when an invalid st e set to enable acce	eared by a valid sto op bit is detected. ss to the FE bit	p bit.						
	SM0	Serial port Mode bi Refer to SM1 fo SMOD0 must be	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit								
	6141	Serial port Mode bi SM0 SM	t 1 11 <u>Mode</u>	Description	on Baud Rate	2 2 (/(:= X 2 === 1=)					
6	SMI	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3	8-bit UAI 9-bit UAI 9-bit UAI	RT F _{XTAL} /I RT Variable RT F _{XTAL} /6 RT Variable	2 (/6 in X2 mode) 4 or F _{XTAL} /32 (/32	2,/16 in X2 mode)				
5	SM2 Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.										
4	REN	Reception Enable b Clear to disable Set to enable ser	it serial reception. ial reception.								
3	TB8	Transmitter Bit 8 / Clear to transmi Set to transmit a	Ninth bit to trans t a logic 0 in the 9t logic 1 in the 9th b	mit in modes 2 an h bit. bit.	d 3.						
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.									
1	TI	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.									
0	RI	Receive Interrupt fl Clear to acknow Set by hardware	ag ledge interrupt. at the end of the 8	th bit time in mode	0, see Figure 14.	and Figure 15. in	the other modes.				

Reset Value = 0000 0000b Bit addressable

Table 17. PCON Register

PCON - Power Control Register (87h)

7	7 6 5 4		3	2	1	0		
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic			Descrip	otion			
7	SMOD1	Serial port Mode bi Set to select dou	t 1 ble baud rate in m	ode 1, 2 or 3.				
6	SMOD0	Serial port Mode bi Clear to select S Set to to select F	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.					
5	-	Reserved The value read fr	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Power-Off Flag Clear to recogniz Set by hardware	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.					
3	GF1	General purpose Fla Cleared by user for g	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
2	GF0	General purpose Fla Cleared by user for g	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Power-Down mode Cleared by hardy Set to enter powe	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.						

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 21. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0		
- PPCH		РТ2Н	PSH	PT1H	PX1H	РТОН	РХОН		
Bit Number	Bit Mnemonic			Descript	Description				
7	-	Reserved The value read f	rom this bit is inde	terminate. Do not s	et this bit.				
6	РРСН	PCA interrupt prio <u>PPCH</u> 0 1 1	rity bit high. <u>PPC</u> Prio 0 1 0 1	<u>rity Level</u> Lowest Highest					
5	РТ2Н	Timer 2 overflow in PT2H 0 1 1	terrupt Priority E <u>PT2</u> 0 1 0 1	ligh bit <u>Priority Level</u> Lowest Highest					
4	PSH	Serial port Priority PSH 0 1 1	High bit <u>PS</u> 0 1 0 1	<u>Priority Level</u> Lowest Highest					
3	PT1H	Timer 1 overflow in <u>PT1H</u> 0 0 1 1 1	terrupt Priority E <u>PT1</u> 0 1 0 1	ligh bit <u>Priority Level</u> Lowest Highest					
2	PX1H	External interrupt 1 <u>PX1H</u> 0 0 1 1 1	l Priority High bi <u>PX1</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest					
1	РТОН	Timer 0 overflow interrupt Priority High bit PT0H PT0 Priority Level 0 0 Lowest 0 1 1 0 1 1							
0	РХ0Н	External interrupt (<u>PX0H</u> 0 0 1 1 1) Priority High bit <u>PX0</u> 0 1 0 1	t <u>Priority Level</u> Lowest Highest					

Reset Value = X000 0000b Not bit addressable

6.12. Power-Off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 26.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

Table 26. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0	
SMOD1	SMOD	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic			Descrip	tion			
7	SMOD1	Serial port Mode bi Set to select dou	t 1 ble baud rate in m	ode 1, 2 or 3.				
6	SMOD0	Serial port Mode bi Clear to select S Set to to select F	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.					
5	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Power-Off Flag Clear to recogniz Set by hardware	Power-Off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.					
3	GF1	General purpose Fl Cleared by user Set by user for g	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
2	GF0	General purpose Fl Cleared by user Set by user for g	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Power-Down mode Cleared by hard Set to enter powe	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle mode bit Clear by hardwa Set to enter idle	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.					

Reset Value = 00X1 0000b Not bit addressable

6.13. Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 27. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	EXTRAM	AO	
Bit Number	Bit Mnemonic			Descrip	tion			
7	-	Reserved The value read fr	om this bit is inde	terminate. Do not s	set this bit.			
6	-	Reserved The value read fr	om this bit is inde	terminate. Do not s	set this bit.			
5	-	Reserved The value read fr	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value read fr	om this bit is inde	terminate. Do not s	set this bit.			
3	-	Reserved The value read fr	om this bit is inde	terminate. Do not s	set this bit.			
2	-	Reserved The value read fr	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	EXTRAM	EXTRAM bit See Table 5.	EXTRAM bit See Table 5.					
0	AO	ALE Output bit Clear to restore A Set to disable AL	ALE Output bit Clear to restore ALE operation during internal fetches. Set to disable ALE operation during internal fetches.					

Reset Value = XXXX XX00b Not bit addressable

7. TS83C51RB2/RC2/RD2 ROM

7.1. ROM Structure

The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:

•	the code array:	es.
•	the encryption array:	s.
•	the signature array:	es.

7.2. ROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

7.2.1. 7.2.1. Encryption Array

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

7.2.2. Program Lock Bits

The lock bits when programmed according to Table 28. will provide different level of protection for the on-chip code and data.

	Program	Lock Bits					
Security level	LB1	LB2	LB3	Protection description			
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.			
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset.			
3	U	Р	U	Same as level 1+ Verify disable. This security level is only available for 51RDX2 devices.			

Table	28.	Program	Lock	bits
-------	-----	---------	------	------

U: unprogrammed

P: programmed

7.2.3. Signature bytes

The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

7.2.4. Verify Algorithm

Refer to 8.3.4.

8. TS87C51RB2/RC2/RD2 EPROM

8.1. EPROM Structure

The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:

•	the code array:
•	the encryption array:
In	addition a third non programmable array is implemented:
•	the signature array:

8.2. EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

8.2.1. Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

8.2.2. Program Lock Bits

The three lock bits, when programmed according to Table 29.8.2.3., will provide different level of protection for the on-chip code and data.

Program Lock Bits				Protection description				
Security level	LB1	LB2	LB3					
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.				
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.				
3	U	Р	U	Same as 2, also verify is disabled.				
4	U	U	Р	Same as 3, also external execution is disabled.				

Table 29	. Program	Lock	bits
----------	-----------	------	------

U: unprogrammed,

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

8.2.3. Signature bytes

The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

9. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2
60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

Table 31. Signature Bytes Content

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	$V_{CC} = 5.5 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

10.4. DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

Table 33	. DC	Parameters	for	Low	Voltage
----------	------	-------------------	-----	-----	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	$0.2 V_{CC} + 0.9$		V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	v	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.45	v	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	v	$I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	0.9 V _{CC}			V	$I_{OH} = -10 \ \mu A$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			v	$I_{OH} = -40 \ \mu A$
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μΑ	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$ Fc = 1 MHz TA = 25^{\circ}C $
I _{PD}	Power Down Current		20 ⁽⁵⁾	50	μΑ	$V_{\rm CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$
			10 ⁽⁵⁾	30		$V_{\rm CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{CC} = 3.3 V^{(8)}$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

NOTES

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; $\overline{EA} = RST = Port \ 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 22.).

3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 23.).

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{OL}s$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

Port 0: 26 mA

Ports 1, 2, 3 and 4 and 5 when available: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office.

8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

All other pins are disconnected.

Figure 20. I_{CC} Test Condition, under reset

10.5.6. External Data Memory Read Cycle

Figure 27. External Data Memory Read Cycle

10.5.7. Serial Port Timing - Shift Register Mode

Table 42. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 43. AC Parameters for a Fix Clock

Speed	I -M 40 MHz		-M -V -V 40 MHz X2 mode standard mode 30 MHz 40 MHz 60 MHz equiv.		V •d mode ⁄IHz	-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

11. Ordering Information

(*) Check with Atmel Wireless & Microcontrollers Sales Office for availability. Ceramic packages (J, K, N) are available for proto typing, not for volume production. Ceramic packages are available for OTP only.

Table	47.	Maximum	Clock	Frequency
-------	-----	---------	-------	-----------

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	