

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rb2-lia

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

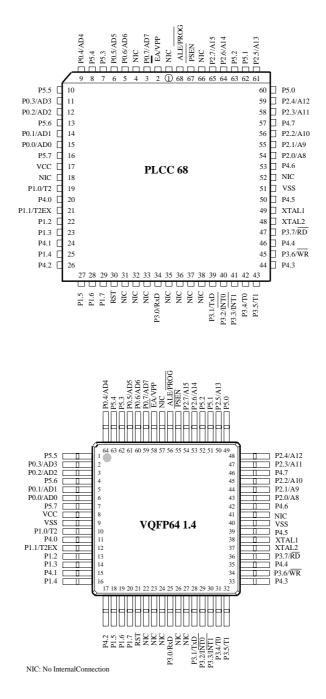

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Table 1. All SFRs with their address and their reset value

	Bit addressable			Noi	n Bit addressa	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C7h
B8h	IP X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH X000 0000	B7h
A8h	IE 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
	macaminad								

reserved

Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . If the hardware watchdog reaches its time-out, the reset pin becomes an output during the time the internal reset is
					activated.

6. TS80C51Rx2 Enhanced Features

In comparison to the original 80C52, the TS80C51Rx2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The extended RAM.
- The Programmable Counter Array (PCA).
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

6.1. X2 Feature

The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1. Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms.

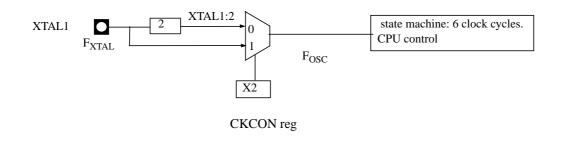


Figure 1. Clock Generation Diagram

6.2. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 4.) that allows the program code to switch between them (Refer to Figure 3).

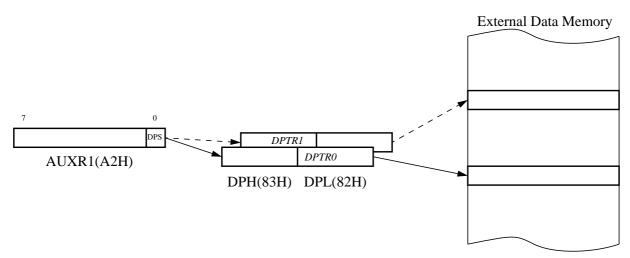


Figure 3. Use of Dual Pointer

 Table 4. AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H		-	-	-	-	GF3	-	-	DPS
	Reset value	Х	Х	Х	Х	0	Х	Х	0

Symbol	Function	Function								
-	Not implement	ted, reserved for future use. ^a								
DPS	Data Pointer S	election.								
	DPS	DPS Operating Mode								
	0	DPTR0 Selected								
	1	DPTR1 Selected								
GF3	This bit is a g	This bit is a general purpose user flag ^b .								

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

b. GF3 will not be available on first version of the RC devices.

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 90A000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR,#DEST	; address of SOURCE ; switch data pointers ; address of DEST
0008 0008 05A2 000A E0	LOOP: INC AUXR1 MOVX A,@DPTR	; switch data pointers ; get a byte from SOURCE
000B A3 000C 05A2 000E F0	INC DPTR INC AUXR1 MOVX @DPTR.A	; increment SOURCE address ; switch data pointers ; write the byte to DEST
000E F0 000F A3 0010 70F6 0012 05A2	INC DPTR JNZ LOOP INC AUXR1	; increment DEST address ; check for 0 terminator ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

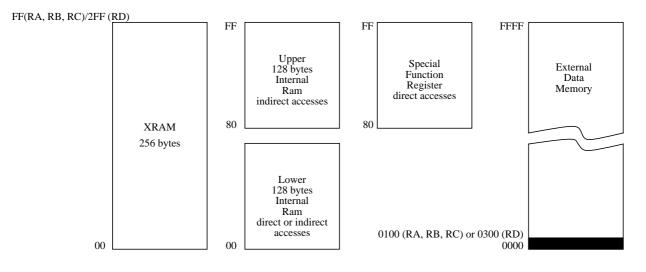


Figure 4. Internal and External Data Memory Address

Ad	AUXR Idress 08EH		-	-	-	-	-	-	EXTRA M	AO		
	Reset	value	Х	Х	Х	X	Х	Х	0	0		
	Symbol					Function	1					
	-	Not imple	mented, 1	eserved fo	or future u	se. ^a						
	AO	Disable/E1	nable AL	E								
		AO	AO Operating Mode									
		0		E is emitte mode is u		istant rate	of 1/6 the	oscillator	frequency (o	r 1/3 if		
		1	ALI	E is active	only duri	ng a MOV	X or MO	VC instruc	tion			
	EXTRAM	Internal/E:	xternal R.	AM (00H-	FFH) acce	ess using N	AOVX @	Ri/@DP	TR			
		EXTRA	M Ope	Operating Mode								
		0	Inte	Internal XRAM access using MOVX @ Ri/ @ DPTR								
		1	Exte	ernal data	memory a	ccess						

 Table 5. Auxiliary Register AUXR

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 6. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0					
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#					
Bit Number	Bit Mnemonic			Descrip	tion							
7	TF2	Timer 2 overflow Fl Must be cleared Set by hardware	by software.	w, if $\mathbf{RCLK} = 0$ and	d TCLK = 0.							
6	EXF2	When set, causes	her 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)									
5	RCLK		ecceive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.									
4	TCLK		Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.									
3	EXEN2		vents on T2EX pin	n for timer 2 operat en a negative trans		is detected, if time	er 2 is not used to					
2	TR2	Clear to turn off	Fimer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.									
1	C/T2#	Clear for timer o	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.									
0	CP/RL2#	Clear to auto-rel	CLK=1, CP/RL2# oad on timer 2 ove	is ignored and tim rflows or negative ns on T2EX pin if	transitions on T2E							

Reset Value = 0000 0000b Bit addressable

• The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

CCA

Table 10. CCAPMn: PCA Modules Compare/Capture Control Register	Table 10). CCAPMn: PC	A Modules	Compare/Capture	Control Register
--	----------	---------------	------------------	------------------------	-------------------------

 PMn Address n = 0 - 4 CCAI CCAI CCAI		40=0DAH 41=0DBH 42=0DCH 43=0DDH 44=0DEH										
			-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn		
	Rese	et value	Х	0	0	0	0	0	0	0		
Syı	nbol	Function	l									
-		Not implen	Not implemented, reserved for future use. ^a									
ECOM	In	Enable Cor	Enable Comparator. ECOMn = 1 enables the comparator function.									
CAPP	n	Capture Po	Capture Positive, CAPPn = 1 enables positive edge capture.									
CAPN	n	Capture Ne	Capture Negative, CAPNn = 1 enables negative edge capture.									
MATn	1	Match. Wh register cau							le's compa	re/capture		
TOGn		00	Foggle. When $TOGn = 1$, a match of the PCA counter with this module's compare/capture egister causes the CEXn pin to toggle.									
PWM	1		ulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width nodulated output.									
ECCF	n	Enable CCI an interrupt	nable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate									

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
X	1	0	0	0	0	Х	16-bit capture by a positive-edge trigger on CEXn
X	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
X	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 11. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 12 & Table 13)

Table 12.	CCAPnH:	PCA	Modules	Capture/C	ompare	Registers	High

CCAPnH Address n = 0 - 4	CCAP0H=0FAH CCAP1H=0FBH CCAP2H=0FCH CCAP3H=0FDH CCAP3H=0FEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 13. CCAPnL: PCA Modules Capture/Compare Registers Low

CCAPnL Address n = 0 - 4	CCAP0L=0EAH CCAP1L=0EBH CCAP2L=0ECH CCAP3L=0EDH CCAP4L=0EEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 14. CH: PCA Counter High

CH Address 0F9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 15. CL: PCA Counter Low

CL Address 0E9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

6.6.5. Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 17. PCON Register

PCON - Power Control Register (87h)

7	6	5	4		3	2	1	0				
SMOD1	SMOD) -	POI	F	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic		Description									
7	SMOD1		erial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.									
6	SMOD0		de bit 0 ect SM0 bit in S0 lect FE bit in SC0									
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	POF		cognize next reset		rom 0 to its nomin	al voltage. Can also	o be set by softwar	re.				
3	GF1		se Flag user for general j for general purp									
2	GF0		se Flag user for general j for general purp									
1	PD	Cleared by	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.									
0	IDL		rdware when into	errupt (or reset occurs.							

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

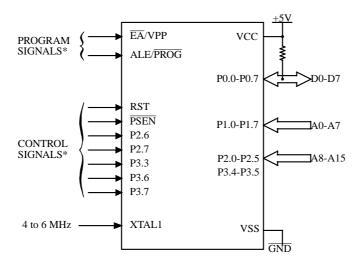
6.10. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.10.1. Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{OSC} , where $T_{OSC} = 1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ $F_{OSC} = 12$ MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).


Table 23. WDTRST Register

WDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

* See Table 31. for proper value on these inputs

Figure 18. Set-Up Modes Configuration

8.3.3. Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise \overline{EA}/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower \overline{EA}/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 19.).

8.3.4. Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C51RB2/RC2/RD2.

P 2.7 is used to enable data output.

To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 19.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

9. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2
60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

Table 31. Signature Bytes Content

10.5.2. External Program Memory Characteristics

Table	36.	Symbol	Description
-------	-----	--------	-------------

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 37. AC Parameters for Fix Clock

Speed		M MHz	X2 1 30 1	V node MHz z equiv.	standar	V rd mode MHz	X2 r 20 M	L node MHz z equiv.	standar	L [.] d mode ⁄IHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units	
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns	
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns	
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns	
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns	
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns	
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns	
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns	
T _{PXIX}	Min	х	х	0	0	0	ns	
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns	
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns	
T _{PLAZ}	Max	х	х	10	10	10	ns	

 Table 38. AC Parameters for a Variable Clock: derating formula

10.5.3. External Program Memory Read Cycle

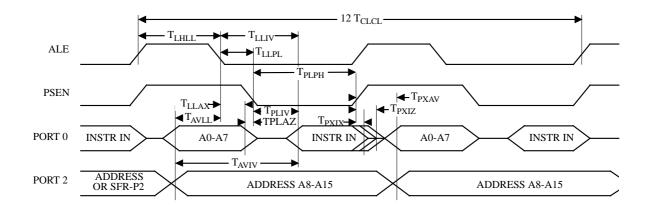


Figure 25. External Program Memory Read Cycle

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	x	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 41. AC	Parameters	for a	Variable	Clock:	derating formula
--------------	------------	-------	----------	--------	------------------

10.5.5. External Data Memory Write Cycle

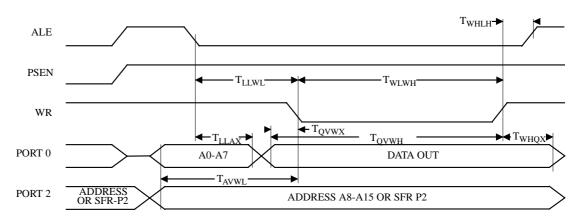


Figure 26. External Data Memory Write Cycle

10.5.6. External Data Memory Read Cycle

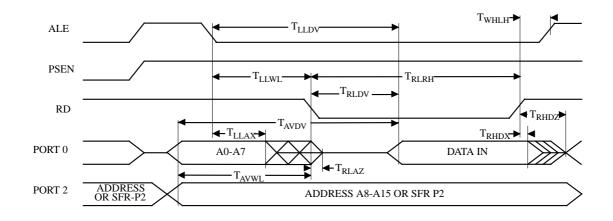


Figure 27. External Data Memory Read Cycle

10.5.7. Serial Port Timing - Shift Register Mode

Table 42. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 43. AC Parameters for a Fix Clock

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns