

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rb2-vie

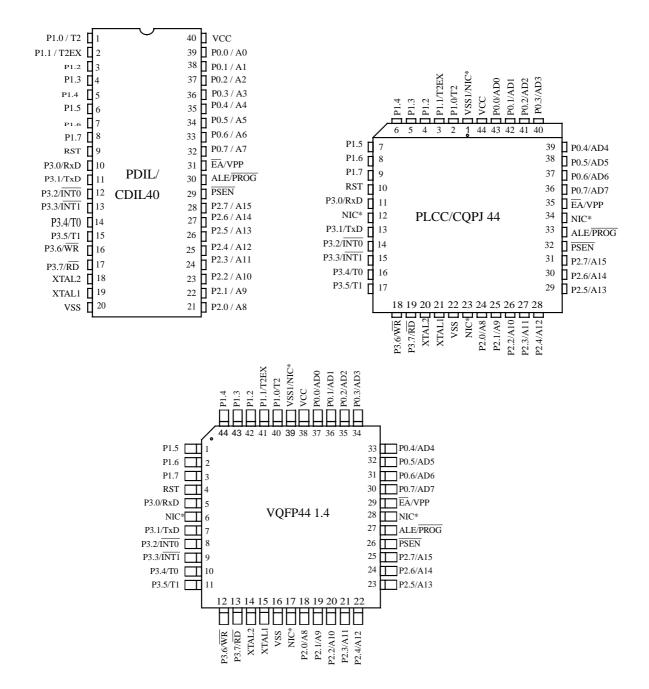
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON


Table 1. All SFRs with their address and their reset value

	Bit addressable			Noi	n Bit addressa	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C7h
B8h	IP X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH X000 0000	B7h
A8h	IE 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
	macaminad								

reserved

5. Pin Configuration

*NIC: No Internal Connection

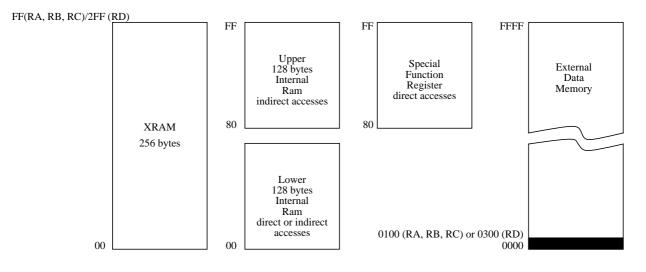


Figure 4. Internal and External Data Memory Address

Ad	AUXR Address 08EH Reset value		-	-	-	-	-	-	EXTRA M	AO	
			Х	Х	Х	X	Х	Х	0	0	
	Symbol					Function	ı				
	-	Not imple	mented, 1	eserved fo	or future u	se. ^a					
	AO	AO Disable/Enable ALE									
		AO	Ope	Operating Mode							
		0		ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used)							
		1	ALI	E is active	only duri	ng a MOV	MOVX or MOVC instruction				
	EXTRAM	Internal/E:	xternal R.	AM (00H-	FFH) acce	ess using N	AOVX @	Ri/@DP	TR		
		EXTRA	M Ope	Operating Mode							
		0	Inte	Internal XRAM access using MOVX @ Ri/ @ DPTR							
		1	Exte	ernal data	memory a	ccess					

 Table 5. Auxiliary Register AUXR

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

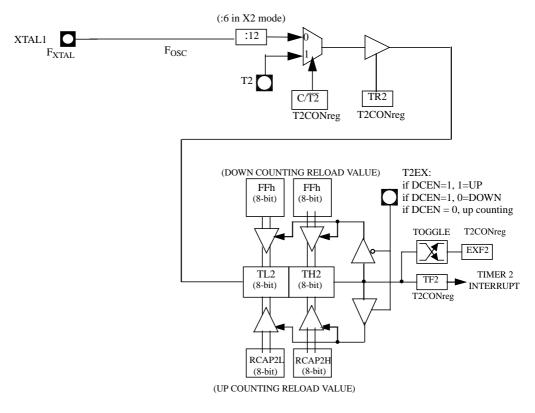


Figure 5. Auto-Reload Mode Up/Down Counter (DCEN = 1)

6.4.2. Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 6) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear $C/\overline{T2}$ bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

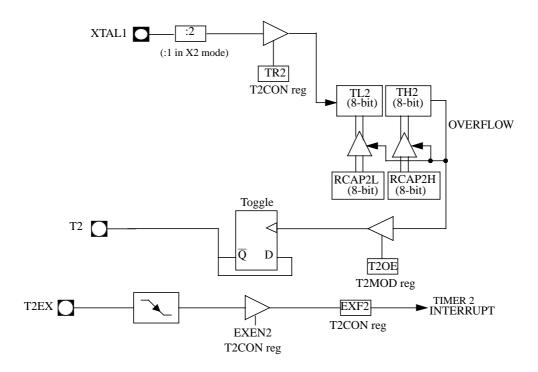


Figure 6. Clock-Out Mode $C/\overline{T2} = 0$

Table 7. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.

Reset Value = XXXX XX00b Not bit addressable

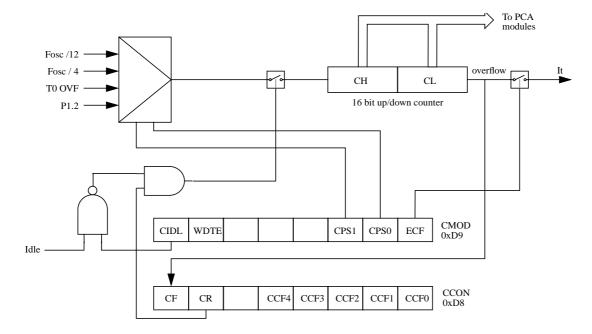


Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
	~	0112021		0000000	1.10000	

	CMOD Address 0D9H		СІ	DL	WDTE	-	-	-	CPS1	CPS0	ECF
	Reset value		(0	0	X	Х	Х	0	0	0
Syı	mbol	Funct	ion								
CIDL		1	Counter Idle control: $CIDL = 0$ programs the PCA Counter to continue functioning during dle Mode. $CIDL = 1$ programs it to be gated off during idle.								
WDTH	E	1	Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.								
-		Not implemented, reserved for future use. ^a									
CPS1		PCA Co	ount Puls	se Sel	lect bit 1.						
CPS0		PCA Co	ount Puls	se Sel	lect bit 0.						
		CPS1	CPS0	Sele	cted PCA	input. ^b					
		0	0	Inter	nal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).		
		0	1	Inter	nal clock	f _{osc} /4 (Or	f _{osc} /2 in	X2 Mode)			
1 0 Timer 0 Overflow											
		1 1 External clock at ECI/P1.2 pin (max rate = $f_{osc}/8$)									
ECF		1				interrupt: t function		enables Cl	F bit in C	CON to ge	enerate an

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reserved on analyzed in rule of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$


The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

6.5.2. 16-bit Software Timer / Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 10).

* Only for Module 4

Figure 10. PCA Compare Mode and PCA Watchdog Timer

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.5.3. High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 11).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

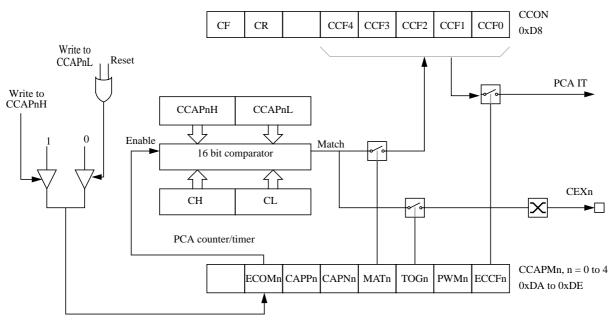


Figure 11. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.5.4. Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 12 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

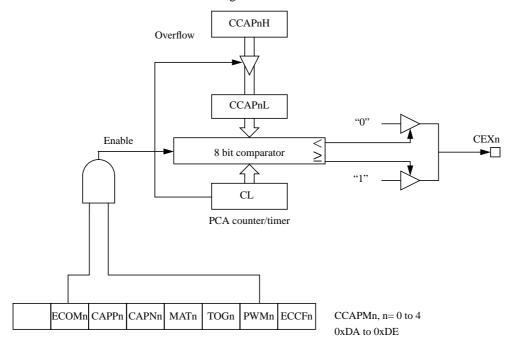


Figure 12. PCA PWM Mode

6.5.5. PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 10 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

6.6.5. Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

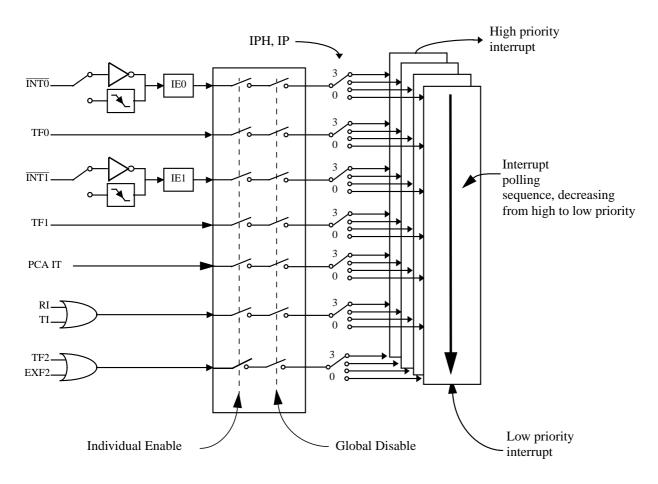
SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0


Reset Value = 0000 0000b Not bit addressable

6.7. Interrupt System

The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 16.

WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the order in INTO, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.

Figure 16. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 19.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 20.) and in the Interrupt Priority High register (See Table 21.). shows the bit values and priority levels associated with each combination.

The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.

Table 18. Priority Level Bit Values

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 19. IE Register

IE - Interrupt Enable Register (A8h)

	7	6	5	4	3	2	1	0
E	ĊA	EC	ET2	ES	ET1	EX1	ЕТО	EX0

Bit Number	Bit Mnemonic	Description
7	EA	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.
6	EC	PCA interrupt enable bit Clear to disable . Set to enable.
5	ET2	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.
4	ES	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.
3	ET1	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.
2	EX1	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.

Reset Value = 0000 0000b Bit addressable

Table 20. IP Register

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0	
-	PPC	PT2	PS	PT1	PX1	PT0	PX0	

Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read from	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	PPC		CA interrupt priority bit Refer to PPCH for priority level.							
5	PT2		mer 2 overflow interrupt Priority bit Refer to PT2H for priority level.							
4	PS	Serial port Priority bit Refer to PSH for prio	Serial port Priority bit Refer to PSH for priority level.							
3	PT1	Timer 1 overflow interre Refer to PT1H for pr		it						
2	PX1	External interrupt 1 Pri Refer to PX1H for pr								
1	PT0	Timer 0 overflow interre Refer to PT0H for pr		it						
0	PX0	External interrupt 0 Pri Refer to PX0H for pr								

Reset Value = X000 0000b Bit addressable

Table 22.	The state of	ports during	idle and	power-down mode
-----------	--------------	--------------	----------	-----------------

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3	
Idle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data	
Idle	External	1	1	Floating	Port Data	Address	Port Data	
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data	
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data	

* Port 0 can force a "zero" level. A "one" will leave port floating.

6.11. ONCETM Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C51Rx2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C51Rx2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and $\overline{\text{PSEN}}$ is high.
- Hold ALE low as RST is deactivated.

While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 25. External Pin Status during ONCE Mode

ALE	PSEN	PSEN Port 0		Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

10.5. AC Parameters

10.5.1. Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range.

Table 34. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and $\overline{\text{PSEN}}$ signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

	-M	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 34	. Load	Capacitance	versus	speed	range.	in	рF
		Capacitanee		peed			r-

Table 36., Table 39. and Table 42. give the description of each AC symbols.

Table 37., Table 40. and Table 43. give for each range the AC parameter.

Table 38., Table 41. and Table 44. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 35. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode	
Freq (MHz)	40	20	40	30	30	20	
T (ns)	25	50	25	33.3	33.3	50	

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = $1/20^{E6}$ = 50 ns):

x= 22 (Table 38.)

T=50ns

 T_{LLIV} = 2T - x = 2 x 50 - 22 = 78ns

10.5.2. External Program Memory Characteristics

Table	36.	Symbol	Description
-------	-----	--------	-------------

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 37. AC Parameters for Fix Clock

Speed		MHz X2 30		-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		40 MHz		standard mode		-L-LX2 modestandard mode20 MHz30 MHz40 MHz equiv.		X2 mode		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max						
Т	25		33		25		50		33		ns					
T _{LHLL}	40		25		42		35		52		ns					
T _{AVLL}	10		4		12		5		13		ns					
T _{LLAX}	10		4		12		5		13		ns					
T _{LLIV}		70		45		78		65		98	ns					
T _{LLPL}	15		9		17		10		18		ns					
T _{PLPH}	55		35		60		50		75		ns					
T _{PLIV}		35		25		50		30		55	ns					
T _{PXIX}	0		0		0		0		0		ns					
T _{PXIZ}		18		12		20		10		18	ns					
T _{AVIV}		85		53		95		80		122	ns					
T _{PLAZ}		10		10		10		10		10	ns					

10.5.4. External Data Memory Characteristics

Parameter
RD Pulse Width
WR Pulse Width
RD to Valid Data In
Data Hold After RD
Data Float After RD
ALE to Valid Data In
Address to Valid Data In
ALE to \overline{WR} or \overline{RD}
Address to \overline{WR} or \overline{RD}
Data Valid to \overline{WR} Transition
Data set-up to WR High
Data Hold After \overline{WR}
RD Low to Address Float
RD or WR High to ALE high

Table 39. Symbol Description