

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	<u> </u>
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rc2-lcb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Mnemonic	1	Pin Nu	mber	Туре	Name And Function
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, \overrightarrow{PSEN} is activated twice each machine cycle, except that two \overrightarrow{PSEN} activations are skipped during each access to external data memory. \overrightarrow{PSEN} is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overline{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) $\overline{\text{EA}}$ must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overline{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	Ι	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56
PSEN	67	55
EA/VPP	2	58
XTAL1	49	38
XTAL2	48	37
P4.0	20	11
P4.1	24	15
P4.2	26	17
P4.3	44	33
P4.4	46	35
P4.5	50	39
P4.6	53	42
P4.7	57	46
P5.0	60	49
P5.1	62	51
P5.2	63	52
P5.3	7	62
P5.4	8	63
P5.5	10	1
P5.6	13	4
P5.7	16	7

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 90A000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR,#DEST	; address of SOURCE ; switch data pointers ; address of DEST
0008 0008 05A2 000A E0	LOOP: INC AUXR1 MOVX A,@DPTR	; switch data pointers ; get a byte from SOURCE
000A E0 000B A3 000C 05A2 000E F0	INC DPTR INC AUXR1 MOVX @DPTR.A	; increment SOURCE address ; switch data pointers ; write the byte to DEST
000E F0 000F A3 0010 70F6 0012 05A2	INC DPTR JNZ LOOP INC AUXR1	; write the byte to DEST ; increment DEST address ; check for 0 terminator ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

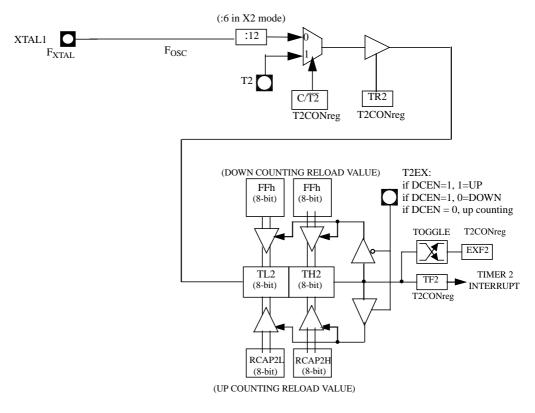


Figure 5. Auto-Reload Mode Up/Down Counter (DCEN = 1)

6.4.2. Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 6) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear $C/\overline{T2}$ bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

Table 6. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			
Bit Number	Bit Mnemonic		Description							
7	TF2	Timer 2 overflow Fl Must be cleared Set by hardware	by software.	w, if $\mathbf{RCLK} = 0$ and	d TCLK = 0.					
6	EXF2	When set, causes	re or a reload is ca the CPU to vecto	aused by a negative r to timer 2 interru 2 doesn't cause an i	pt routine when tin	ner 2 interrupt is e	nabled.			
5	RCLK		Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.							
4	TCLK			nsmit clock for ser mit clock for seria						
3	EXEN2		vents on T2EX pin	n for timer 2 operat en a negative trans		is detected, if time	er 2 is not used to			
2	TR2	Clear to turn off	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.							
1	C/T2#	Clear for timer o	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.							
0	CP/RL2#	Clear to auto-rel	CLK=1, CP/RL2# oad on timer 2 ove	is ignored and tim rflows or negative ns on T2EX pin if	transitions on T2E					

Reset Value = 0000 0000b Bit addressable

Table 7. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.

Reset Value = XXXX XX00b Not bit addressable

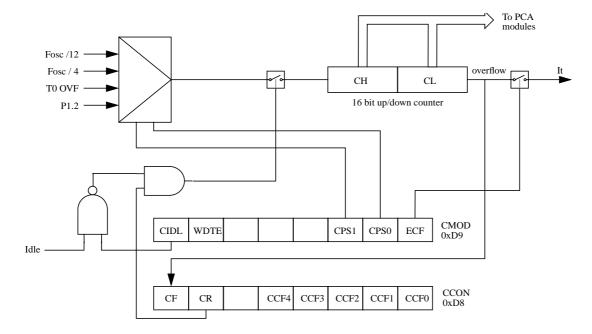


Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
	~	0112021		0000000	1.10.00	

	CMOD Address 0D9H		СІ	DL	WDTE	-	-	-	CPS1	CPS0	ECF
	Rese	et value	(0	0	X	Х	Х	0	0	0
Syı	mbol	Funct	Function								
CIDL		1) programs it to be g				e functioni	ng during
WDTH	E	1	Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.								
-		Not imp	olemente	d, res	erved for	future use.	a				
CPS1		PCA Co	ount Puls	se Sel	lect bit 1.						
CPS0		PCA Co	ount Puls	se Sel	lect bit 0.						
		CPS1	CPS0	Sele	cted PCA	input. ^b					
		0	0	Inter	nal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).		
		0	1	Inter	nal clock	f _{osc} /4 (Or	f _{osc} /2 in	X2 Mode)			
		1	0	Timer 0 Overflow							
		1	1	External clock at ECI/P1.2 pin (max rate = $f_{osc}/8$)							
ECF		1				interrupt: t function		enables Cl	F bit in C	CON to ge	enerate an

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reserved on analyzed in rule of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

6.5.1. PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 9).

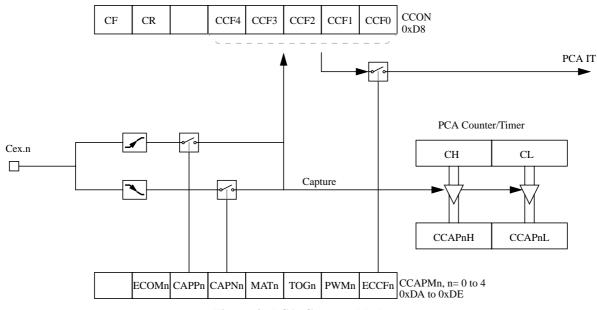


Figure 9. PCA Capture Mode

6.5.4. Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 12 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

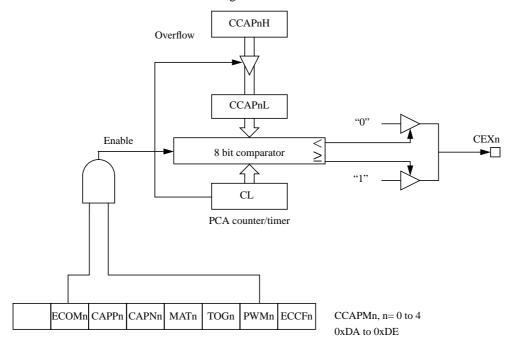
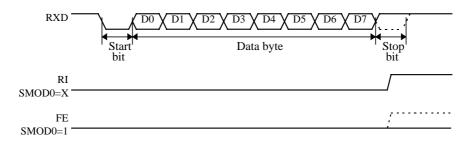


Figure 12. PCA PWM Mode

6.5.5. PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 10 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:


- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 14. and Figure 15.).

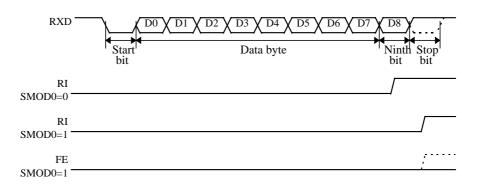


Figure 15. UART Timings in Modes 2 and 3

6.6.2. Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Table 17. PCON Register

PCON - Power Control Register (87h)

7	6	5	4		3	2	1	0	
SMOD1	SMOD) -	POI	F	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description							
7	SMOD1	Serial port Mo Set to sele	de bit 1 ct double baud ra	te in m	ode 1, 2 or 3.				
6	SMOD0		de bit 0 ect SM0 bit in S0 lect FE bit in SC0						
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF		cognize next reset		rom 0 to its nomin	al voltage. Can also	o be set by softwar	re.	
3	GF1		se Flag user for general j for general purp						
2	GF0		se Flag user for general j for general purp						
1	PD	Cleared by	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.							

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 24. WDTPRG Register

7	6		5	4	3	2	1	0			
T4	Т3		T2	T1	TO	<u>82</u>	<u>81</u>	S0			
Bit Number	Bit Mnemonic		Description								
7	T4										
6	Т3										
5	T2	Reserve Do 1		or clear this bit.							
4	T1										
3	TO										
2	S2	WDT Ti	ime-out sele	ct bit 2							
1	S1	WDT Ti	ime-out sele	ct bit 1							
0	SO	WDT Ti	ime-out sele	ct bit 0							
		$\frac{S2}{0}$ 0 0 0 1 1 1 1 1	<u>S1</u> 0 1 1 0 0 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d Time-out) machine cycles, 1) machine cycles, 3) machine cycles, 6) machine cycles, 1) machine cycles, 2) machine cycles, 5) machine cycles, 1) machine cycles, 2	2.7 ms @ 12 MHz 5.5 ms @ 12 MHz 31 ms @ 12 MHz 62 ms @ 12 MHz 42 ms @ 12 MHz .05 s @ 12 MHz					

Reset value XXXX X000

6.10.2. WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C51Rx2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C51Rx2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

WDTPRG Address (0A7h)

6.13. Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 27. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	EXTRAM	AO			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
6	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
5	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
4	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
3	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
2	-	Reserved The value read	from this bit is inde	terminate. Do not s	set this bit.					
1	EXTRAM	EXTRAM bit See Table 5.								
0	AO		ALE operation dur LE operation durin		3.					

Reset Value = XXXX XX00b Not bit addressable

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	$V_{CC} = 5.5 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

10.4. DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

Table 33.	DC Parameters	for Low	Voltage
-----------	----------------------	---------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.45	V	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	v	$I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	0.9 V _{CC}			V	$I_{OH} = -10 \ \mu A$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	$I_{OH} = -40 \ \mu A$
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μΑ	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$Fc = 1 MHz$ $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{\rm CC} = 3.3 \ V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{\rm CC} = 3.3 \ V^{(8)}$

10.5. AC Parameters

10.5.1. Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low.

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range.

Table 34. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and $\overline{\text{PSEN}}$ signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

	-M	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 34	. Load	Capacitance	versus	speed	range.	in	рF
		Capacitanee		peed			r-

Table 36., Table 39. and Table 42. give the description of each AC symbols.

Table 37., Table 40. and Table 43. give for each range the AC parameter.

Table 38., Table 41. and Table 44. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 35. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode
Freq (MHz)	40	20	40	30	30	20
T (ns)	25	50	25	33.3	33.3	50

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = $1/20^{E6}$ = 50 ns):

x= 22 (Table 38.)

T=50ns

 T_{LLIV} = 2T - x = 2 x 50 - 22 = 78ns

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

 Table 38. AC Parameters for a Variable Clock: derating formula

10.5.3. External Program Memory Read Cycle

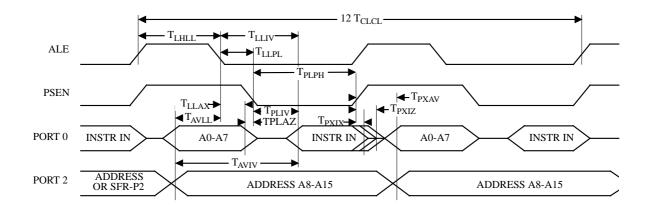
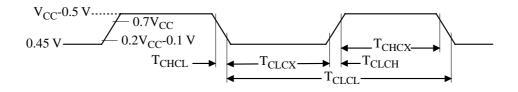


Figure 25. External Program Memory Read Cycle

10.5.4. External Data Memory Characteristics

Parameter
RD Pulse Width
WR Pulse Width
RD to Valid Data In
Data Hold After RD
Data Float After RD
ALE to Valid Data In
Address to Valid Data In
ALE to \overline{WR} or \overline{RD}
Address to \overline{WR} or \overline{RD}
Data Valid to \overline{WR} Transition
Data set-up to WR High
Data Hold After \overline{WR}
RD Low to Address Float
RD or WR High to ALE high

Table 39. Symbol Description



10.5.11. External Clock Drive Characteristics (XTAL1)

Table	46.	AC	Parameters
-------	-----	----	------------

Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

10.5.12. External Clock Drive Waveforms

Figure 30. External Clock Drive Waveforms

10.5.13. AC Testing Input/Output Waveforms

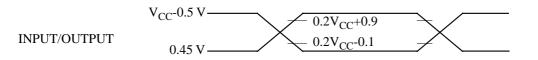


Figure 31. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

10.5.14. Float Waveforms

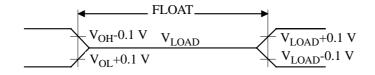


Figure 32. Float Waveforms

	TS80C51RA2/RD2 ROMless	TS83C51RB2/RC2/RD2zzz ROM	TS87C51RB2/RC2/RD2 OTP
-MCA	X	Х	X
-MCB	X	Х	X
-MCE	X	Х	X
-MCL	RD2 only	RD2 only	RD2 only
-MCM	RD2 only	RD2 only	RD2 only
-VCA	Х	Х	X
-VCB	Х	X	X
-VCE	Х	X	X
-VCL	RD2 only	RD2 only	RD2 only
-VCM	RD2 only	RD2 only	RD2 only
-LCA	Х	Х	X
-LCB	X	Х	X
-LCE	X	Х	X
-LCL	RD2 only	RD2 only	RD2 only
-LCM	RD2 only	RD2 only	RD2 only
-MIA	Х	Х	X
-MIB	Х	Х	X
-MIE	Х	X	X
-MIL	RD2 only	RD2 only	RD2 only
-MIM	RD2 only	RD2 only	RD2 only
-VIA	Х	Х	X
-VIB	X	Х	X
-VIE	X	X	X
-VIL	RD2 only	RD2 only	RD2 only
-VIM	RD2 only	RD2 only	RD2 only
-LIA	Х	Х	Х
-LIB	Х	Х	X
-LIE	X	Х	X
-LIL	RD2 only	RD2 only	RD2 only
-LIM	RD2 only	RD2 only	RD2 only
-EA	Х		Х
-EB	Х		Х
-EE	X		X
-EL	RD2 only		RD2 only
-EM	RD2 only		RD2 only
-EJ			RC2 and RD2 only
-EK			RC2 and RD2 only
-EN			RD2 only

Table 48. Possible Ordering Entries

• -Ex for samples

- Tape and Reel available for B, E, L and M packages
- Dry pack mandatory for E and M packages