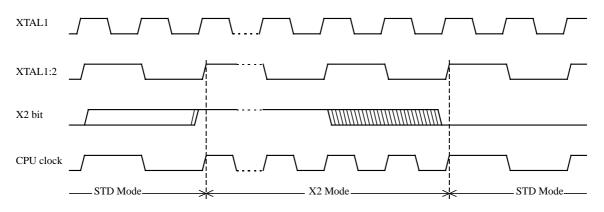


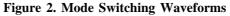
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Product StatusObsoleteCore Processor80C51Core Size8-BitSpeed3/20MHzConnectivityUART/USARTPripheralsPOR, PWM, WDTNumber of I/O32Program Memory Size32KB (32K x8)Program Memory TypeOTPEERPOM Size512 x 8Voltage Supply (Vcc/Vdd)3.2Program Size512 x 8Otagen Supply (Vcc/Vdd).2Program Size.2Program Size.2Sufact Ore Size.2Voltage Supply (Vcc/Vdd).2Suface Constraint.2Operating Type.2Operating Type.2Suface Constraint.2Suface Constraint.2Suface Size.2Suface Size Size Size Size Size Size Size Siz	Details	
Core Size8-BitCore Size8-BitSpeed30/20MHzConnectivityUART/USARTPeripheralsPOR, PWM, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package-	Product Status	Obsolete
Speed30/20MHzConnectivityUART/USARTPeripheralsPOR, PWM, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (1-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Core Processor	80C51
ConnectivityUART/USARTPeripheralsPOR, PWM, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature4.0°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Core Size	8-Bit
PeripheralsPOR, PWM, WDTNumber of I/O32Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Speed	30/20MHz
Number of I/O32Program Memory Size32KB (32K × 8)Program Memory TypeOTPEEPROM Size-RAM Size512 × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Connectivity	UART/USART
Program Memory Size32KB (32K x 8)Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Peripherals	POR, PWM, WDT
Program Memory TypeOTPEEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Number of I/O	32
EEPROM Size-RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Program Memory Size	32KB (32K x 8)
RAM Size512 x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Program Memory Type	OTP
Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	EEPROM Size	-
Data Converters-Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	RAM Size	512 x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LCC (J-Lead)Supplier Device Package44-PLCC (16.6x16.6)	Data Converters	-
Mounting Type Surface Mount Package / Case 44-LCC (J-Lead) Supplier Device Package 44-PLCC (16.6x16.6)	Oscillator Type	Internal
Package / Case 44-LCC (J-Lead) Supplier Device Package 44-PLCC (16.6x16.6)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 44-PLCC (16.6x16.6)	Mounting Type	Surface Mount
	Package / Case	44-LCC (J-Lead)
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rc2-lib	Supplier Device Package	44-PLCC (16.6x16.6)
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rc2-lib

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 90A000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR,#DEST	; address of SOURCE ; switch data pointers ; address of DEST
0008 0008 05A2 000A E0	LOOP: INC AUXR1 MOVX A,@DPTR	; switch data pointers ; get a byte from SOURCE
000A E0 000B A3 000C 05A2 000E F0	INC DPTR INC AUXR1 MOVX @DPTR.A	; increment SOURCE address ; switch data pointers ; write the byte to DEST
000E F0 000F A3 0010 70F6 0012 05A2	INC DPTR JNZ LOOP INC AUXR1	; increment DEST address ; check for 0 terminator ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

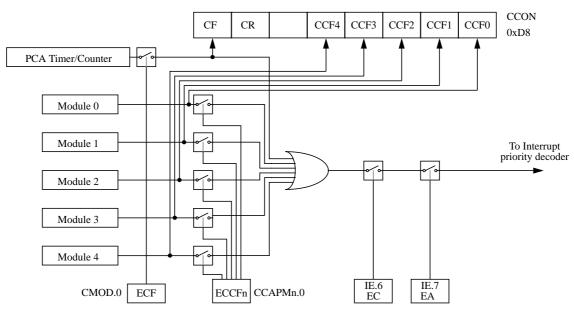


Figure 8. PCA Interrupt System

PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered,
- 16-bit Capture, negative-edge triggered,
- 16-bit Capture, both positive and negative-edge triggered,
- 16-bit Software Timer,
- 16-bit High Speed Output,
- 8-bit Pulse Width Modulator.

In addition, module 4 can be used as a Watchdog Timer.

Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 10). The registers contain the bits that control the mode that each module will operate in.

- The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.
- The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.

Table 11 shows the CCAPMn settings for the various PCA functions.

CCA

Table 10. CCAPMn: PCA Modules Compare/Capture Control Register	Table 10). CCAPMn: PC	A Modules	Compare/Capture	Control Register
--	----------	---------------	------------------	------------------------	-------------------------

 PMn Address n = 0 - 4 CCAPM CCAPM CCAPM		40=0DAH 41=0DBH 42=0DCH 43=0DDH 44=0DEH									
			-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	
	Rese	et value	Х	0	0	0	0	0	0	0	
Syı	nbol	Function	l								
-		Not implen	Not implemented, reserved for future use. ^a								
ECOM	In	Enable Cor	nparator. I	ECOMn =	1 enables	the compa	rator func	tion.			
CAPP	n	Capture Po	sitive, CA	PPn = 1 e	nables pos	itive edge	capture.				
CAPN	n	Capture Ne	Capture Negative, CAPNn = 1 enables negative edge capture.								
MATn	1	Match. Wh register cau							le's compa	re/capture	
TOGn		Toggle. Wh register cau				PCA cou	nter with	this modul	le's compa	re/capture	
PWMn Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse wid modulated output.					ılse width						
ECCF	n	Enable CCI an interrupt		. Enables o	compare/ca	pture flag	CCFn in t	he CCON	register to	o generate	

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
X	1	0	0	0	0	Х	16-bit capture by a positive-edge trigger on CEXn
X	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
X	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)


Table 11. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 12 & Table 13)

6.5.2. 16-bit Software Timer / Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 10).

* Only for Module 4

Figure 10. PCA Compare Mode and PCA Watchdog Timer

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.5.3. High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 11).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

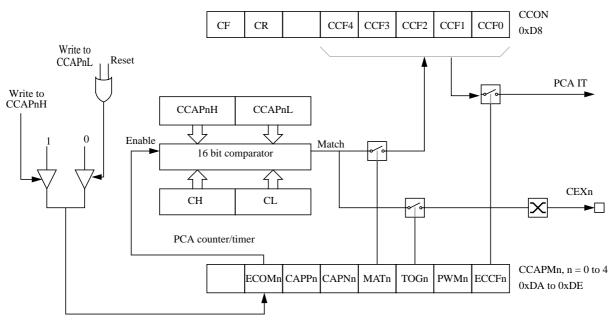


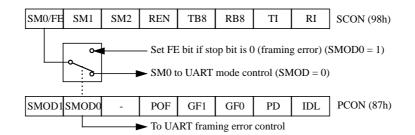
Figure 11. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.6. TS80C51Rx2 Serial I/O Port

The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous


Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

6.6.1. Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 13).

Figure 13. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 16.) bit is set.

Table 16. SCON Register

SCON - Serial Control Register (98h)

7	6	5		4	3	2	1	0				
FE/SM0	SM1	SN	12	REN	TB8	RB8	TI	RI				
Bit Number	Bit Mnemonic		Description									
7	FE	Clear to Set by h	Straming Error bit (SMOD0=1)Clear to reset the error state, not cleared by a valid stop bit.Set by hardware when an invalid stop bit is detected.SMOD0 must be set to enable access to the FE bit									
	SM0		SM1 for	serial port mode	selection. access to the SM0	bit						
		Serial port I <u>SM0</u>	Mode bit <u>SM1</u>		Descripti	on Baud Rate	2					
6	SM1	0 0 1 1	0 1 0 1	0 1 2 3	Shift Reg 8-bit UAI 9-bit UAI 9-bit UAI	RT Variable RT F _{XTAL} /6	4 or F _{XTAL} /32 (/32					
5	SM2	Clear to Set to en	disable n	nultiprocessor cor tiprocessor comm	cessor Communic nmunication featur unication feature ir	e.	l eventually mode	1. This bit should				
4	REN		disable s	t erial reception. al reception.								
3	TB8	Clear to	transmit	a logic 0 in the 9t		d 3.						
2	RB8	Cleared Set by h	Set to transmit a logic 1 in the 9th bit. Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.									
1	TI	Clear to	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other nodes.									
0	RI		acknowle	edge interrupt.	th bit time in mode	0, see Figure 14.	and Figure 15. in	the other modes.				

Reset Value = 0000 0000b Bit addressable

Table 18. Priority Level Bit Values

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 19. IE Register

IE - Interrupt Enable Register (A8h)

	7	6	5	4	3	2	1	0
E	ĊA	EC	ET2	ES	ET1	EX1	ЕТО	EX0

Bit Number	Bit Mnemonic	Description
7	EA	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.
6	EC	PCA interrupt enable bit Clear to disable . Set to enable.
5	ET2	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.
4	ES	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.
3	ET1	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.
2	EX1	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.

Reset Value = 0000 0000b Bit addressable

6.10. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.10.1. Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{OSC} , where $T_{OSC} = 1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ $F_{OSC} = 12$ MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).

Table 23. WDTRST Register

WDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

7. TS83C51RB2/RC2/RD2 ROM

7.1. ROM Structure

The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:

•	the code array:	. 16/32/64 Kbytes.
٠	the encryption array:	64 bytes.
٠	the signature array:	4 bytes.

7.2. ROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

7.2.1. 7.2.1. Encryption Array

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

7.2.2. Program Lock Bits

The lock bits when programmed according to Table 28. will provide different level of protection for the on-chip code and data.

	Program Lock Bits			
Security level	LB1	LB2	LB3	Protection description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset.
3	U	Р	U	Same as level 1+ Verify disable. This security level is only available for 51RDX2 devices.

Table 28. Program Lock bits	Table	28.	Program	Lock	bits
-----------------------------	-------	-----	---------	------	------

U: unprogrammed

P: programmed

7.2.3. Signature bytes

The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

7.2.4. Verify Algorithm

Refer to 8.3.4.

8. TS87C51RB2/RC2/RD2 EPROM

8.1. EPROM Structure

The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:

•	the code array:
•	the encryption array:
In	addition a third non programmable array is implemented:
•	the signature array:

8.2. EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

8.2.1. Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

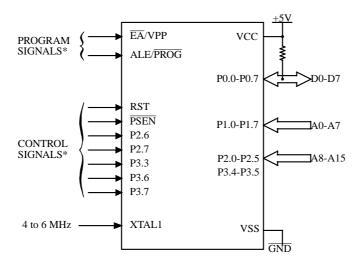
8.2.2. Program Lock Bits

The three lock bits, when programmed according to Table 29.8.2.3., will provide different level of protection for the on-chip code and data.

P	rogram Lo	ock Bits		Protection description
Security level	LB1	LB2	LB3	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

Table 29.	Program	Lock	bits
-----------	---------	------	------

U: unprogrammed,


P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

8.2.3. Signature bytes

The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

* See Table 31. for proper value on these inputs

Figure 18. Set-Up Modes Configuration

8.3.3. Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise \overline{EA}/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower \overline{EA}/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 19.).

8.3.4. Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C51RB2/RC2/RD2.

P 2.7 is used to enable data output.

To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 19.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

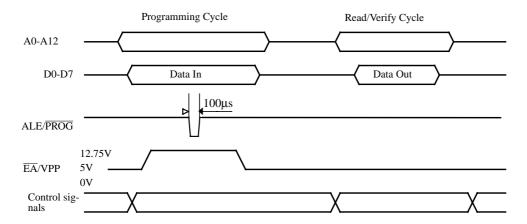


Figure 19. Programming and Verification Signal's Waveform

8.4. EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

8.4.1. Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

9. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment		
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers		
31h	57h	Family Code: C51 X2		
60h	7Ch	Product name: TS83C51RD2		
60h	FCh	Product name: TS87C51RD2		
60h	37h	Product name: TS83C51RC2		
60h	B7h	Product name: TS87C51RC2		
60h	3Bh	Product name: TS83C51RB2		
60h	BBh	Product name: TS87C51RB2		
61h	FFh	Product revision number		

Table 31. Signature Bytes Content

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	$V_{CC} = 5.5 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

10.4. DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

Table 33.	DC Parameters	for Low	Voltage
-----------	----------------------	---------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	v	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.45	V	$I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	v	$I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	0.9 V _{CC}			V	$I_{OH} = -10 \ \mu A$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	$I_{OH} = -40 \ \mu A$
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μΑ	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μΑ	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μΑ	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	$Fc = 1 MHz$ $TA = 25^{\circ}C$
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{\rm CC} = 3.3 \ V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{\rm CC} = 3.3 \ V^{(8)}$

Symb	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

NOTES

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; $\overline{EA} = RST = Port \ 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 22.).

3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 23.).

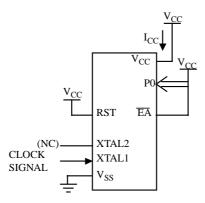
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{OL}s$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

Port 0: 26 mA


Ports 1, 2, 3 and 4 and 5 when available: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office.

8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

All other pins are disconnected.

Figure 20. I_{CC} Test Condition, under reset

Speed		M MHz	X2 r 30 M	V node MHz z equiv.	standar	V rd mode MHz	X2 r 20 N	L node ⁄IHz z equiv.	standar	L rd mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Table 40. AC Parameters for a Fix Clock

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	x	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 41. AC	Parameters	for a	Variable	Clock:	derating formula
--------------	------------	-------	----------	--------	------------------

10.5.5. External Data Memory Write Cycle

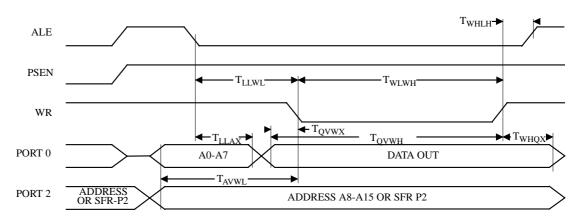


Figure 26. External Data Memory Write Cycle

10.5.6. External Data Memory Read Cycle

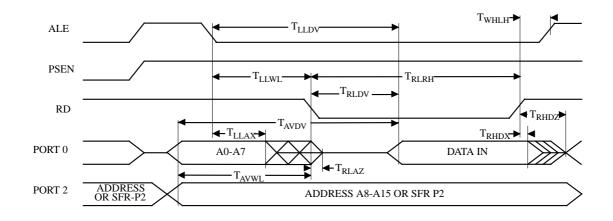


Figure 27. External Data Memory Read Cycle

10.5.7. Serial Port Timing - Shift Register Mode

Table 42. Symbol Description

Symbol	Parameter				
T _{XLXL}	Serial port clock cycle time				
T _{QVHX}	Output data set-up to clock rising edge				
T _{XHQX}	Output data hold after clock rising edge				
T _{XHDX}	Input data hold after clock rising edge				
T _{XHDV}	Clock rising edge to input data valid				

Table 43. AC Parameters for a Fix Clock

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns