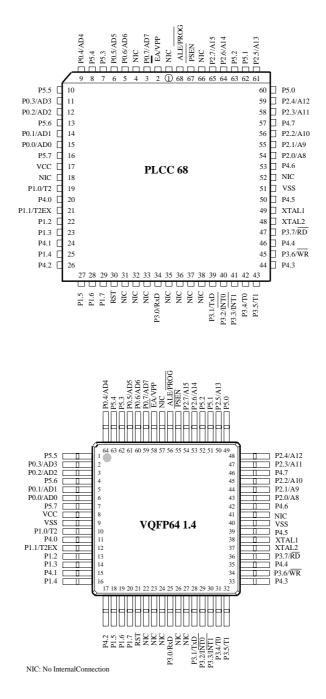


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

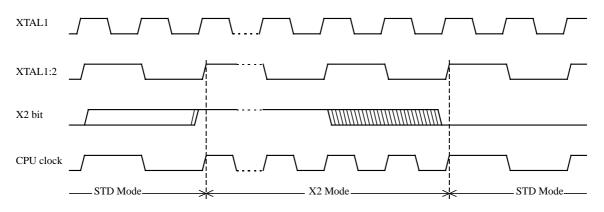
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rc2-mia

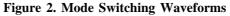
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . If the hardware watchdog reaches its time-out, the reset pin becomes an output during the time the internal reset is
					activated.

5.1. Pin Description for 64/68 pin Packages


Port 4 and Port 5 are 8-bit bidirectional I/O ports with internal pull-ups. Pins that have 1 written to them are pulled high by the internal pull ups and can be used as inputs.


As inputs, pins that are externally pulled low will source current because of the internal pull-ups.

Refer to the previous pin description for other pins.

	PLCC68	SQUARE VQFP64 1.4
VSS	51	9/40
VCC	17	8
P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

6.2. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 4.) that allows the program code to switch between them (Refer to Figure 3).

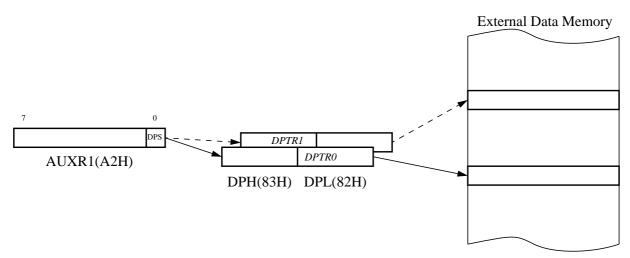


Figure 3. Use of Dual Pointer

 Table 4. AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H		-	-	-	-	GF3	-	-	DPS
	Reset value	Х	Х	Х	Х	0	Х	Х	0

Symbol	Function	Function								
-	Not implement	Not implemented, reserved for future use. ^a								
DPS	Data Pointer S	election.								
	DPS	DPS Operating Mode								
	0	DPTR0 Selected								
	1	1 DPTR1 Selected								
GF3	This bit is a g	This bit is a general purpose user flag ^b .								

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

b. GF3 will not be available on first version of the RC devices.

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 90A000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR,#DEST	; address of SOURCE ; switch data pointers ; address of DEST
0008 0008 05A2 000A E0	LOOP: INC AUXR1 MOVX A,@DPTR	; switch data pointers ; get a byte from SOURCE
000A E0 000B A3 000C 05A2 000E F0	INC DPTR INC AUXR1 MOVX @DPTR.A	; increment SOURCE address ; switch data pointers ; write the byte to DEST
000E F0 000F A3 0010 70F6 0012 05A2	INC DPTR JNZ LOOP INC AUXR1	; increment DEST address ; check for 0 terminator ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

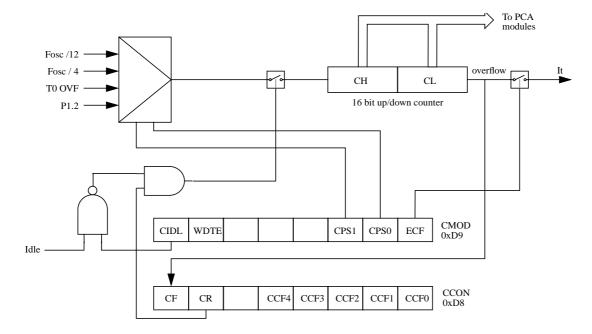


Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
	~	0112021		0000000	1.10.00	

	IOD s 0D9H		СІ	DL	WDTE	-	-	-	CPS1	CPS0	ECF
	Rese	et value	(0	0	X	Х	Х	0	0	0
Syı	mbol	Funct	Function								
CIDL		1) programs it to be g				e functioni	ng during
WDTH	E	1	Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.								
-		Not imp	olemente	d, res	erved for	future use.	a				
CPS1		PCA Co	ount Puls	se Sel	lect bit 1.						
CPS0		PCA Co	ount Puls	se Sel	lect bit 0.						
		CPS1	CPS0	Sele	cted PCA	input. ^b					
		0	0	Inter	nal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).		
		0	1	Inter	nal clock	f _{osc} /4 (Or	f _{osc} /2 in	X2 Mode)			
		1	0	Timer 0 Overflow							
		1	1	External clock at ECI/P1.2 pin (max rate = f_{osc} / 8)							
ECF		1				interrupt: t function		enables Cl	F bit in C	CON to ge	enerate an

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reserved on analyzed in rule of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 9).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

	CCON Address 0D8H		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
	Rese	et value	0	0	X	0	0	0	0	0
Sy	nbol	Function	ı							
CF		an interrup	CA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags n interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but an only be cleared by software.							
CR		PCA Coun by software			•		Irn the PCA	A counter	on. Must	be cleared
-		Not implen	nented, res	erved for	future use	e. ^a				
CCF4		PCA Modu cleared by		rupt flag.	Set by ha	ardware wh	nen a matc	h or captu	are occurs	. Must be
CCF3		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be
CCF2		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be
CCF1		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be
CCF0		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be

 Table 9. CCON: PCA Counter Control Register

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

The watchdog timer function is implemented in module 4 (See Figure 10).

The PCA interrupt system is shown in Figure 8

6.5.1. PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 9).

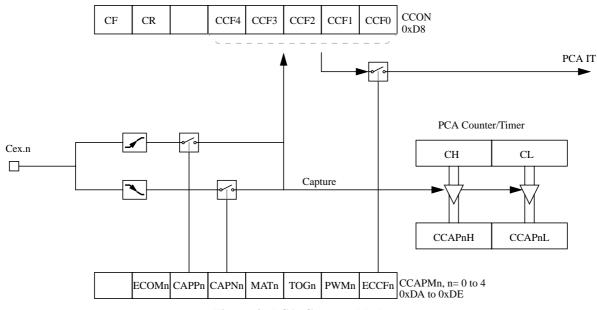


Figure 9. PCA Capture Mode

6.6.5. Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

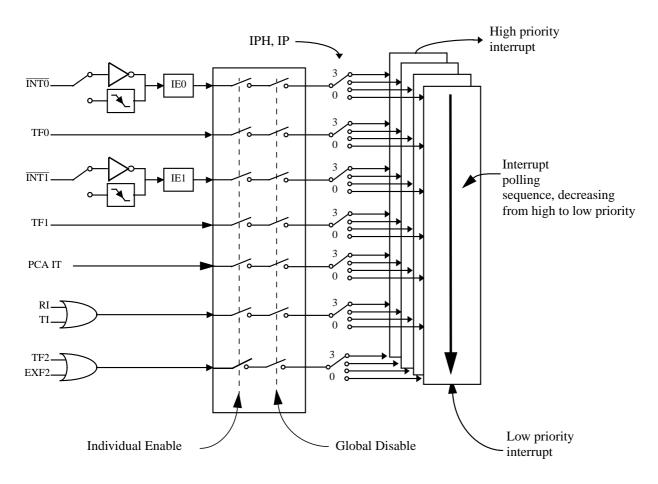
Reset Value = 0000 0000b Not bit addressable

Table 17. PCON Register

PCON - Power Control Register (87h)

7	6	5	4		3	2	1	0
SMOD1	SMOD) -	POI	F	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic				Descriț	otion		
7	SMOD1	Serial port Mo Set to sele	de bit 1 ct double baud ra	te in m	ode 1, 2 or 3.			
6	SMOD0		de bit 0 ect SM0 bit in S0 lect FE bit in SC0					
5	-	Reserved The value	ead from this bit	is inde	terminate. Do not	set this bit.		
4	POF		cognize next reset		rom 0 to its nomin	al voltage. Can also	o be set by softwar	re.
3	GF1		se Flag user for general j for general purp					
2	GF0		se Flag user for general j for general purp					
1	PD		hode bit hardware when r power-down mo		ccurs.			
0	IDL		rdware when into	errupt (or reset occurs.			

Reset Value = 00X1 0000b Not bit addressable


Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

6.7. Interrupt System

The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 16.

WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the order in INTO, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.

Figure 16. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 19.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 20.) and in the Interrupt Priority High register (See Table 21.). shows the bit values and priority levels associated with each combination.

The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.

Table 21. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	РРСН	РТ2Н	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic			Descrip	tion		
7	-	Reserved The value read f	from this bit is ind	eterminate. Do not s	et this bit.		
6	РРСН	PCA interrupt prio <u>PPCH</u> 0 1 1		<u>ority Level</u> Lowest Highest			
5	РТ2Н	Timer 2 overflow in <u>PT2H</u> 0 0 1 1 1	tterrupt Priority <u>PT2</u> 0 1 0 1 1 1 1 1 1 1	High bit <u>Priority Level</u> Lowest Highest			
4	PSH	Serial port Priority <u>PSH</u> 0 1 1 1	High bit <u>PS</u> 0 1 0 1	<u>Priority Level</u> Lowest Highest			
3	PT1H	Timer 1 overflow in <u>PT1H</u> 0 0 1 1 1	terrupt Priority <u>PT1</u> 0 1 0 1 1 1 1 1 1 1	High bit <u>Priority Level</u> Lowest Highest			
2	PX1H	External interrupt <u>PX1H</u> 0 0 1 1 1	1 Priority High b <u>PX1</u> 0 1 0 1 1	it <u>Priority Level</u> Lowest Highest			
1	РТОН	Timer 0 overflow in <u>PT0H</u> 0 1 1	tterrupt Priority <u>PTO</u> 0 1 0 1 1	High bit <u>Priority Level</u> Lowest Highest			
0	РХОН	External interrupt	0 Priority High b <u>PX0</u> 0 1 0 1	it <u>Priority Level</u> Lowest Highest			

Reset Value = X000 0000b Not bit addressable

Table 22.	The state of	ports during	idle and	power-down mode
-----------	--------------	--------------	----------	-----------------

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

* Port 0 can force a "zero" level. A "one" will leave port floating.

6.10. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.10.1. Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{OSC} , where $T_{OSC} = 1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ $F_{OSC} = 12$ MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).

Table 23. WDTRST Register

WDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

10. Electrical Characteristics

10.1. Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	-40°C to 85°C
Storage Temperature	$-65^{\circ}C$ to $+ 150^{\circ}C$
Voltage on V _{CC} to V _{SS}	-0.5 V to + 7 V
Voltage on V _{PP} to V _{SS}	-0.5 V to + 13 V
Voltage on Any Pin to V _{SS}	-0.5 V to V_{CC} + 0.5 V
Power Dissipation	$1 W^{(2)}$

NOTES

1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

10.2. Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

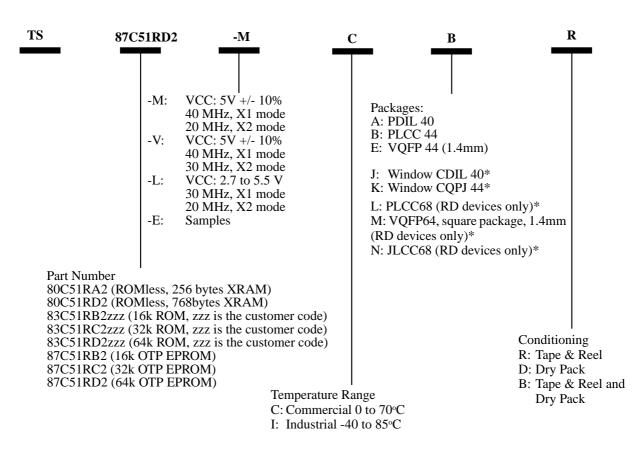
10.5.2. External Program Memory Characteristics

Table	36.	Symbol	Description
-------	-----	--------	-------------

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 37. AC Parameters for Fix Clock

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns



Speed		-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		L rd mode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Table 40. AC Parameters for a Fix Clock

11. Ordering Information

(*) Check with Atmel Wireless & Microcontrollers Sales Office for availability. Ceramic packages (J, K, N) are available for proto typing, not for volume production. Ceramic packages are available for OTP only.

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	