

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rc2-vie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1. Pin Description for 64/68 pin Packages

Port 4 and Port 5 are 8-bit bidirectional I/O ports with internal pull-ups. Pins that have 1 written to them are pulled high by the internal pull ups and can be used as inputs.

As inputs, pins that are externally pulled low will source current because of the internal pull-ups.

Refer to the previous pin description for other pins.

	PLCC68	SQUARE VQFP64 1.4
VSS	51	9/40
VCC	17	8
P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

6.2. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 4.) that allows the program code to switch between them (Refer to Figure 3).

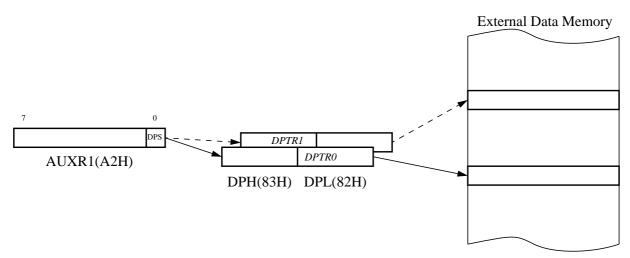


Figure 3. Use of Dual Pointer

 Table 4. AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H		-	-	-	-	GF3	-	-	DPS
	Reset value	Х	Х	Х	Х	0	Х	Х	0

Symbol	Function						
-	Not implement	Not implemented, reserved for future use. ^a					
DPS	Data Pointer S	ata Pointer Selection.					
	DPS	Operating Mode					
	0	DPTR0 Selected					
	1	DPTR1 Selected					
GF3	This bit is a g	This bit is a general purpose user flag ^b .					

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

b. GF3 will not be available on first version of the RC devices.

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

6.4. Timer 2

The timer 2 in the TS80C51RX2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 6) and T2MOD register (See Table 7). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and $CP/\overline{RL2}$ (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description.

Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C51RX2 Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

6.4.1. Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 5. In this mode the T2EX pin controls the direction of count.

When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

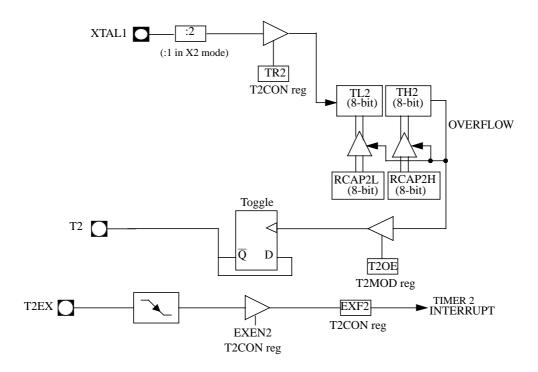


Figure 6. Clock-Out Mode $C/\overline{T2} = 0$

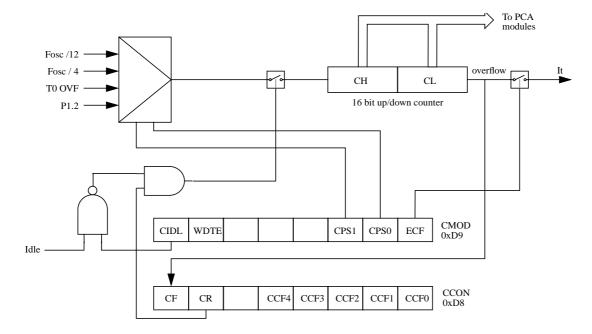


Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
	~	0112021		0000000	1.10000	

	CMOD Address 0D9H		СІ	DL	WDTE	-	-	-	CPS1	CPS0	ECF
	Rese	et value	(0	0	X	Х	Х	0	0	0
Syı	mbol	Funct	ion								
CIDL		1	Counter Idle control: $CIDL = 0$ programs the PCA Counter to continue functioning during dle Mode. $CIDL = 1$ programs it to be gated off during idle.								
WDTH	E	1	Watchdog Timer Enable: $WDTE = 0$ disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.								
-		Not implemented, reserved for future use. ^a									
CPS1		PCA Co	ount Puls	se Sel	lect bit 1.						
CPS0		PCA Co	ount Puls	se Sel	lect bit 0.						
		CPS1	CPS0	Sele	cted PCA	input. ^b					
		0	0	Inter	nal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).		
		0	1	Inter	nal clock	f _{osc} /4 (Or	f _{osc} /2 in	X2 Mode)			
		1	0	Tim	er 0 Overf	low					
		1	1	External clock at ECI/P1.2 pin (max rate = f_{osc} / 8)							
ECF		1				interrupt: t function		enables Cl	F bit in C	CON to ge	enerate an

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reserved on analyzed in rule of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

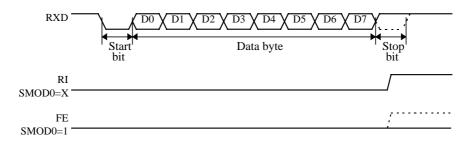
- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 9).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

CCON Address 0D8H		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	Rese	et value	0	0	X	0	0	0	0	0
Sy	nbol	Function	ı							
CF		an interrup	CA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags n interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but an only be cleared by software.							
CR		1	PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA counter off.							
-		Not implen	nented, res	erved for	future use	e. ^a				
CCF4		PCA Modu cleared by		rupt flag.	Set by ha	ardware wh	nen a matc	h or captu	are occurs	. Must be
CCF3		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be
CCF2		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be
CCF1		PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. N cleared by software.							. Must be	
CCF0		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be

 Table 9. CCON: PCA Counter Control Register


a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

The watchdog timer function is implemented in module 4 (See Figure 10).

The PCA interrupt system is shown in Figure 8

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 14. and Figure 15.).

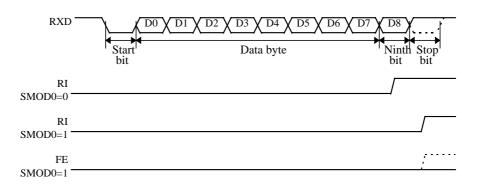


Figure 15. UART Timings in Modes 2 and 3

6.6.2. Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Table 16. SCON Register

SCON - Serial Control Register (98h)

7	6	5		4	3	2	1	0		
FE/SM0	SM1	SN	12	REN	TB8	RB8	TI	RI		
Bit Number	Bit Mnemonic				Descrip	tion	-			
7	FE	Clear to Set by h	The second secon							
	SM0	Refer to	ial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit							
		Serial port I <u>SM0</u>	Mode bit <u>SM1</u>		Descripti	on Baud Rate	2			
6	SM1	0 0 1 1	0 1 0 1	0 1 2 3	Shift Reg 8-bit UAI 9-bit UAI 9-bit UAI	RT Variable RT F _{XTAL} /6	4 or F _{XTAL} /32 (/32			
5	SM2	Clear to Set to en	disable n	nultiprocessor cor tiprocessor comm	cessor Communic nmunication featur unication feature ir	e.	l eventually mode	1. This bit should		
4	REN		disable s	t erial reception. al reception.						
3	TB8	Clear to	transmit	a logic 0 in the 9t logic 1 in the 9t		d 3.				
2	RB8	Cleared Set by h	by hardw ardware i	h bit received in are if 9th bit rece f 9th bit received 2 = 0, RB8 is the	ived is a logic 0.	n mode 0 RB8 is n	ot used.			
1	TI	Clear to	cansmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other odes.							
0	RI		acknowle	edge interrupt.	th bit time in mode	0, see Figure 14.	and Figure 15. in	the other modes.		

Reset Value = 0000 0000b Bit addressable

Table 17. PCON Register

PCON - Power Control Register (87h)

7	6	5	4		3	2	1	0			
SMOD1	SMOD) -	POI	F	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description								
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.								
6	SMOD0		de bit 0 ect SM0 bit in S0 lect FE bit in SC0								
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	POF	Clear to re	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.								
3	GF1		se Flag user for general j for general purp								
2	GF0		se Flag user for general j for general purp								
1	PD	Cleared by	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.								
0	IDL		Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.								

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

6.8. Idle mode

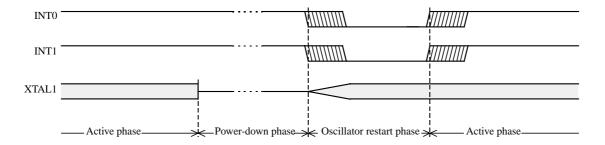
An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

6.9. Power-Down Mode


To save maximum power, a power-down mode can be invoked by software (Refer to Table 17., PCON register).

In power-down mode, the oscillator is stopped and the instruction that invoked power-down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power-down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts $\overline{INT0}$ and $\overline{INT1}$ are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input.

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 17. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C51Rx2 into power-down mode.

Figure 17. Power-Down Exit Waveform

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content. NOTE: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 22.	The state of	ports during	idle and	power-down mode
-----------	--------------	--------------	----------	-----------------

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data*	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data*	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

* Port 0 can force a "zero" level. A "one" will leave port floating.

6.10. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.10.1. Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{OSC}, where T_{OSC} = $1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ $F_{OSC} = 12$ MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).

Table 23. WDTRST Register

WDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

Table 24. WDTPRG Register

7	6		5	4	3	2	1	0		
T4	Т3	T2 T1 T0 S2					<u>81</u>	S0		
Bit Number	Bit Mnemonic	Description								
7	T4									
6	Т3									
5	T2	Reserve Do 1		or clear this bit.						
4	T1									
3	TO									
2	S2	WDT Ti	WDT Time-out select bit 2							
1	S1	WDT Ti	ime-out sele	ct bit 1						
0	SO	WDT Ti	ime-out sele	ct bit 0						
		$\frac{S2}{0}$ 0 0 0 1 1 1 1 1	<u>S1</u> 0 1 1 0 0 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d Time-out) machine cycles, 1) machine cycles, 3) machine cycles, 6) machine cycles, 1) machine cycles, 2) machine cycles, 5) machine cycles, 1) machine cycles, 2	2.7 ms @ 12 MHz 5.5 ms @ 12 MHz 31 ms @ 12 MHz 62 ms @ 12 MHz 42 ms @ 12 MHz .05 s @ 12 MHz				

Reset value XXXX X000

6.10.2. WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C51Rx2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C51Rx2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

WDTPRG Address (0A7h)

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

9. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2
60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

Table 31. Signature Bytes Content

10. Electrical Characteristics

10.1. Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	-40°C to 85°C
Storage Temperature	$-65^{\circ}C$ to $+ 150^{\circ}C$
Voltage on V _{CC} to V _{SS}	-0.5 V to + 7 V
Voltage on V _{PP} to V _{SS}	-0.5 V to + 13 V
Voltage on Any Pin to V _{SS}	-0.5 V to V_{CC} + 0.5 V
Power Dissipation	$1 W^{(2)}$

NOTES

1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

10.2. Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

 Table 38. AC Parameters for a Variable Clock: derating formula

10.5.3. External Program Memory Read Cycle

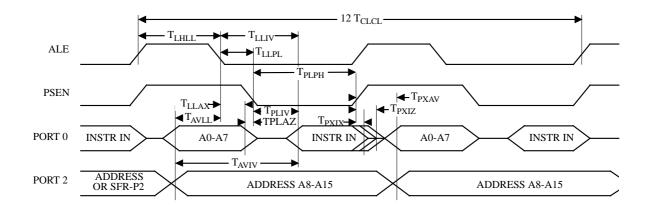


Figure 25. External Program Memory Read Cycle

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	x	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 41. AC	Parameters	for a	Variable	Clock:	derating formula
--------------	------------	-------	----------	--------	------------------

10.5.5. External Data Memory Write Cycle

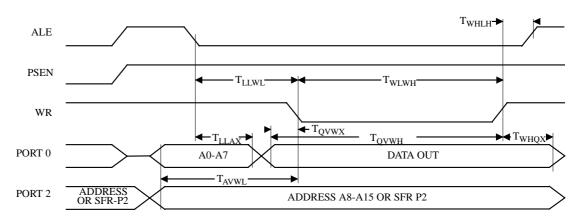


Figure 26. External Data Memory Write Cycle

10.5.6. External Data Memory Read Cycle

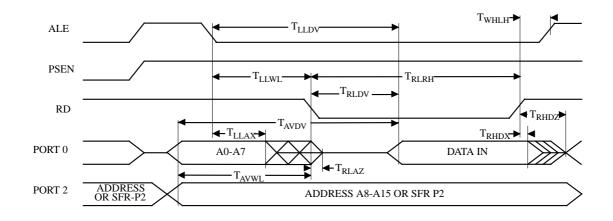


Figure 27. External Data Memory Read Cycle

10.5.7. Serial Port Timing - Shift Register Mode

Table 42. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 43. AC Parameters for a Fix Clock

Speed		M MHz	X2 n 30 N	V node AHz z equiv.	standar	V •d mode ⁄IHz	X2 n 20 N	L node AHz z equiv.	standar	L rd mode ⁄IHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 44. AC Parameters	s for a	Variable	Clock:	derating formula
-------------------------	---------	----------	--------	------------------

10.5.8. Shift Register Timing Waveforms

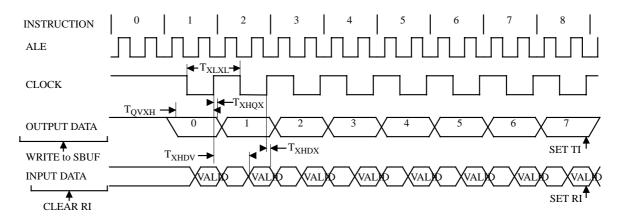


Figure 28. Shift Register Timing Waveforms