

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rd2-lcb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PDIL40 PLCC44 VQFP44 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RA2	0	0	256	512	32
TS80C51RD2	0	0	768	1024	32
TS83C51RB2	16k	0	256	512	32
TS83C51RC2	32k	0	256	512	32
TS83C51RD2	64k	0	768	1024	32
TS87C51RB2	0	16k	256	512	32
TS87C51RC2	0	32k	256	512	32
TS87C51RD2	0	64k	768	1024	32

PLCC68 VQFP64 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RD2	0	0	768	1024	48
TS83C51RD2	64k	0	768	1024	48
TS87C51RD2	0	64k	768	1024	48

3. Block Diagram

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Table 1. All SFRs with their address and their reset value

	Bit addressable			Noi	n Bit address	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		F
F0h	B 0000 0000								F
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		E
E0h	ACC 0000 0000								E
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		D
D0h	PSW 0000 0000								D
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			C
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C
B8h	IP X000 000	SADEN 0000 0000							B
B0h	P3 1111 1111							IPH X000 0000	В
A8h	IE 0000 0000	SADDR 0000 0000							A
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A
98h	SCON 0000 0000	SBUF XXXX XXXX							91
90h	P1 1111 1111								9
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	81
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	8
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

reserved

5. Pin Configuration

*NIC: No Internal Connection

Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running,
					resets the device. An internal diffused resistor to $V_{\mbox{\scriptsize SS}}$ permits a power-on reset
					using only an external capacitor to V_{CC} . If the hardware watchdog reaches its
					time-out, the reset pin becomes an output during the time the internal reset is
					activated.

Figure 4. Internal and External Data Memory Address

AUXR ress 08EH		-	-	-	-	-	-	EXTRA M	AO		
Reset	value	X	Х	Х	Х	Х	Х	0	0		
Symbol		Function									
-	Not imp	Not implemented, reserved for future use. ^a									
AO	Disable/I	Disable/Enable ALE									
	AO	AO Operating Mode									
	0	ALI X2	E is emitte mode is u	ed at a cor sed)	istant rate	of 1/6 the	oscillator	frequency (or	r 1/3 if		
	1	AL	E is active	only duri	ng a MOV	X or MO	VC instruc	tion			
EXTRAM	Internal/I	External R	AM (00H-	FFH) acce	ess using N	AOVX @	Ri/ @ DP	TR			
	EXTR	EXTRAM Operating Mode									
	0	0 Internal XRAM access using MOVX @ Ri/ @ DPTR									
	1	Ext	ernal data	memory a	ccess						

 Table 5. Auxiliary Register AUXR

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 6. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	5 4 3 2 1 0									
TF2	EXF2	RCLK	RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#									
Bit Number	Bit Mnemonic		Description									
7	TF2	Timer 2 overflow Fla Must be cleared Set by hardware	Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.									
6	EXF2	Timer 2 External Fl Set when a captu When set, causes Must be cleared	'imer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)									
5	RCLK	Receive Clock bit Clear to use time Set to use timer 2	Exercive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.									
4	TCLK	Transmit Clock bit Clear to use time Set to use timer 2	r 1 overflow as tra 2 overflow as trans	nsmit clock for ser mit clock for serial	ial port in mode 1 port in mode 1 or	or 3.						
3	EXEN2	Timer 2 External En Clear to ignore e Set to cause a caj clock the serial port.	able bit vents on T2EX pir pture or reload wh	1 for timer 2 operat en a negative trans	ion. ition on T2EX pin	is detected, if time	er 2 is not used to					
2	TR2	Timer 2 Run contro Clear to turn off Set to turn on tim	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.									
1	C/T2#	Timer/Counter 2 sel Clear for timer of Set for counter of	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.									
0	CP/RL2#	Timer 2 Capture/Re If RCLK=1 or To Clear to auto-relo Set to capture on	load bit CLK=1, CP/RL2# ad on timer 2 ove negative transition	is ignored and time rflows or negative ns on T2EX pin if !	er is forced to auto transitions on T2E EXEN2=1.	o-reload on timer 2 X pin if EXEN2=1	overflow. l.					

Reset Value = 0000 0000b Bit addressable

Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
abic	υ.	CITOD.	IUII	Counter	mout	Register

CM Addres	CMOD Address 0D9H		CI	DL	WDTE	-	-	-	CPS1	CPS0	ECF	
	Rese	et value	()	0	Х	Х	Х	0	0	0	
Syı	nbol	Funct	ion									
CIDL		Counter idle Mo	Counter Idle control: $CIDL = 0$ programs the PCA Counter to continue functioning during idle Mode. $CIDL = 1$ programs it to be gated off during idle.									
WDTE	C	Watchd WDTE	og Time = 1 enal	Finer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. enables it.								
-		Not imp	olemente	d, res	served for	future use	a					
CPS1		PCA Co	ount Puls	se Se	lect bit 1.							
CPS0		PCA Co	ount Puls	se Se	lect bit 0.							
		CPS1	CPS0	Sele	cted PCA	input. ^b						
		0	0	Inte	rnal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).			
		0	1	Inte	rnal clock	$f_{osc}/4$ (Or	f _{osc} /2 in	X2 Mode)				
		1	0	Timer 0 Overflow								
		1	1	1 External clock at ECI/P1.2 pin (max rate = f_{osc} / 8)								
ECF		PCA Ei interrup	nable Co t. ECF =	unter = 0 di	Overflow sables that	interrupt: t function	ECF = 1 of CF.	enables Cl	F bit in C	CON to ge	enerate an	

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

CCA

Table 10.	CCAPMn:	PCA	Modules	Compare/Capt	ure Control	Registers
-----------	----------------	-----	---------	--------------	-------------	-----------

.PMn A n = 0 -	Address - 4 CCAPM0=0DAH CCAPM1=0DBH CCAPM2=0DCH CCAPM3=0DDH CCAPM4=0DEH										
				-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn
		Res	et value	Х	0	0	0	0	0	0	0
	Syı	nbol	Function								
	-		Not implemented, reserved for future use. ^a								
	ECOM	In	Enable Cor	nparator.	ECOMn =	1 enables	the compa	rator func	tion.		
	CAPP	n	Capture Po	sitive, CA	PPn = 1 e	nables pos	itive edge	capture.			
	CAPN	n	Capture Ne	gative, CA	APNn = 1	enables ne	gative edg	e capture.			
	MATn	1	Match. Wh register cau	en MATn ises the C	= 1, a ma CFn bit in	atch of the CCON to	PCA cou be set, fla	nter with a sigging an i	this modul interrupt.	le's compa	re/capture
	TOGn		Toggle. Wi register cau	Foggle. When $TOGn = 1$, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.							
	PWM	1	Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.								
	ECCF	n	Enable CC	F interrupt	. Enables o	compare/ca	pture flag	CCFn in t	the CCON	register to	generate

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
X	1	0	0	0	0	Х	16-bit capture by a positive-edge trigger on CEXn
X	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
X	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 11. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 12 & Table 13)

Table 12	2. CCAPnH:	PCA Modu	es Capture/C	Compare	Registers	High
----------	------------	----------	--------------	---------	-----------	------

CCAPnH Address n = 0 - 4	CCAP0H=0FAH CCAP1H=0FBH CCAP2H=0FCH CCAP3H=0FDH CCAP3H=0FEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 13. CCAPnL: PCA Modules Capture/Compare Registers Low

CCAPnL Address n = 0 - 4	CCAP0L=0EAH CCAP1L=0EBH CCAP2L=0ECH CCAP3L=0EDH CCAP4L=0EEH								
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 14. CH: PCA Counter High

CH Address 0F9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 15. CL: PCA Counter Low

CL Address 0E9H									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 14. and Figure 15.).

Figure 15. UART Timings in Modes 2 and 3

6.6.2. Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

6.7. Interrupt System

The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 16.

WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the order in INTO, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.

Figure 16. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 19.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 20.) and in the Interrupt Priority High register (See Table 21.). shows the bit values and priority levels associated with each combination.

The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.

6.10. Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.10.1. Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{OSC} , where $T_{OSC} = 1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ $F_{OSC} = 12$ MHz. To manage this feature, refer to WDTPRG register description, Table 24. (SFR0A7h).

Table 23. WDTRST Register

WDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

8. TS87C51RB2/RC2/RD2 EPROM

8.1. EPROM Structure

The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:

•	the code array:
•	the encryption array:
In	addition a third non programmable array is implemented:
•	the signature array:

8.2. EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

8.2.1. Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

8.2.2. Program Lock Bits

The three lock bits, when programmed according to Table 29.8.2.3., will provide different level of protection for the on-chip code and data.

F	Program Lo	ock Bits		Protection description					
Security level	LB1	LB2	LB3						
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.					
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.					
3	U	Р	U	Same as 2, also verify is disabled.					
4	U	U	Р	Same as 3, also external execution is disabled.					

Table 29	. Program	Lock	bits
----------	-----------	------	------

U: unprogrammed,

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

8.2.3. Signature bytes

The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

* See Table 31. for proper value on these inputs

Figure 18. Set-Up Modes Configuration

8.3.3. Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS87C51RB2/RC2/RD2 the following sequence must be exercised:

- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise \overline{EA}/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower \overline{EA}/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 19.).

8.3.4. Verify algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C51RB2/RC2/RD2.

P 2.7 is used to enable data output.

To verify the TS87C51RB2/RC2/RD2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 19.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	x	x	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	x	x	10	10	10	ns

 Table 38. AC Parameters for a Variable Clock: derating formula

10.5.3. External Program Memory Read Cycle

Figure 25. External Program Memory Read Cycle

10.5.4. External Data Memory Characteristics

Table 57. Symbol Description								
Symbol	Parameter							
T _{RLRH}	RD Pulse Width							
T _{WLWH}	WR Pulse Width							
T _{RLDV}	RD to Valid Data In							
T _{RHDX}	Data Hold After RD							
T _{RHDZ}	Data Float After RD							
T _{LLDV}	ALE to Valid Data In							
T _{AVDV}	Address to Valid Data In							
T _{LLWL}	ALE to WR or RD							
T _{AVWL}	Address to \overline{WR} or \overline{RD}							
T _{QVWX}	Data Valid to \overline{WR} Transition							
T _{QVWH}	Data set-up to WR High							
T _{WHQX}	Data Hold After WR							
T _{RLAZ}	RD Low to Address Float							
T _{WHLH}	RD or WR High to ALE high							

Table 39. Symbol Description

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	x	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 41. AC Parameters	for	a	Variable	Clock:	derating	formula
-------------------------	-----	---	----------	---------------	----------	---------

10.5.5. External Data Memory Write Cycle

Figure 26. External Data Memory Write Cycle

10.5.11. External Clock Drive Characteristics (XTAL1)

Table	46.	AC	Parameters
-------	-----	----	-------------------

Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

10.5.12. External Clock Drive Waveforms

Figure 30. External Clock Drive Waveforms

10.5.13. AC Testing Input/Output Waveforms

Figure 31. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

10.5.14. Float Waveforms

Figure 32. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

10.5.15. Clock Waveforms

Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

11. Ordering Information

(*) Check with Atmel Wireless & Microcontrollers Sales Office for availability. Ceramic packages (J, K, N) are available for proto typing, not for volume production. Ceramic packages are available for OTP only.

Table	47.	Maximum	Clock	Frequency
-------	-----	---------	-------	-----------

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	