

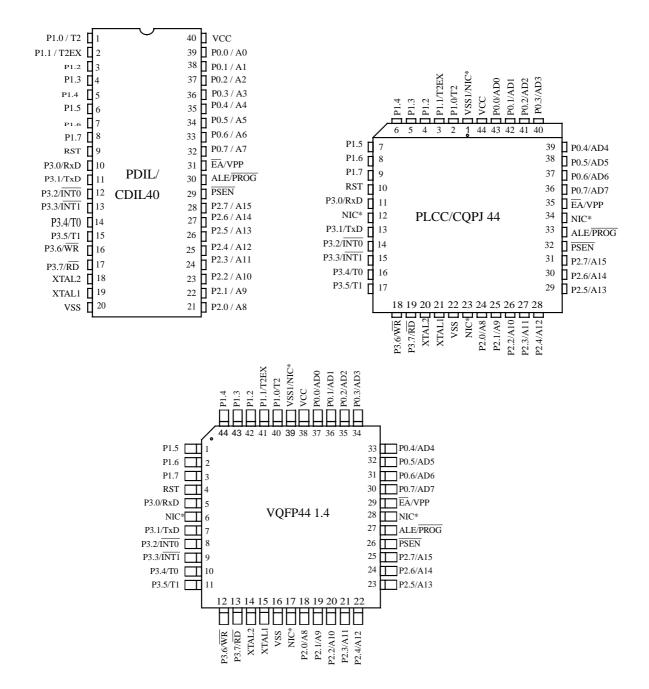
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rd2-mce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Pin Configuration

*NIC: No Internal Connection

				Туре	Name And Function
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, \overrightarrow{PSEN} is activated twice each machine cycle, except that two \overrightarrow{PSEN} activations are skipped during each access to external data memory. \overrightarrow{PSEN} is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overline{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) $\overline{\text{EA}}$ must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overline{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	Ι	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

6. TS80C51Rx2 Enhanced Features

In comparison to the original 80C52, the TS80C51Rx2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The extended RAM.
- The Programmable Counter Array (PCA).
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

6.1. X2 Feature

The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

6.1.1. Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2. shows the mode switching waveforms.

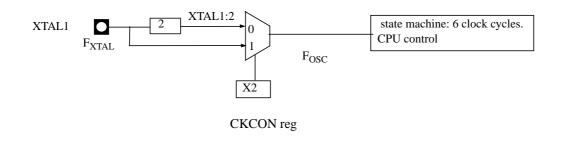


Figure 1. Clock Generation Diagram

6.2. Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 4.) that allows the program code to switch between them (Refer to Figure 3).

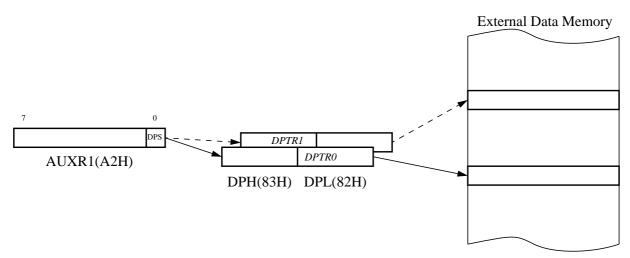


Figure 3. Use of Dual Pointer

 Table 4. AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H		-	-	-	-	GF3	-	-	DPS
	Reset value	Х	Х	Х	Х	0	Х	Х	0

Symbol	Function							
-	Not implement	Not implemented, reserved for future use. ^a						
DPS	Data Pointer S	ata Pointer Selection.						
	DPS	DPS Operating Mode						
	0	DPTR0 Selected						
	1 DPTR1 Selected							
GF3	This bit is a general purpose user flag ^b .							

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

b. GF3 will not be available on first version of the RC devices.

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added

00A2	AUXR1 EQU 0A2H	
; 0000 909000 0003 05A2 0005 90A000	MOV DPTR,#SOURCE INC AUXR1 MOV DPTR,#DEST	; address of SOURCE ; switch data pointers ; address of DEST
0008 0008 05A2 000A E0	LOOP: INC AUXR1 MOVX A,@DPTR	; switch data pointers ; get a byte from SOURCE
000A E0 000B A3 000C 05A2 000E F0	INC DPTR INC AUXR1 MOVX @DPTR.A	; increment SOURCE address ; switch data pointers ; write the byte to DEST
000E F0 000F A3 0010 70F6 0012 05A2	INC DPTR JNZ LOOP INC AUXR1	; write the byte to DEST ; increment DEST address ; check for 0 terminator ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

6.3. Expanded RAM (XRAM)

The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for increased data parameter handling and high level language usage.

RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in external data space; RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH in external data space.

The TS80C51Rx2 has internal data memory that is mapped into four separate segments.

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register. (See Table 5.)

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data ,accesses the SFR at location 0A0H (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0, # data where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).
- The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first 256 or 768 bytes of external data memory.
- With <u>EXTRAM = 0</u>, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (\overline{WR}) and P3.7 (\overline{RD}). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e. 0100H to FFFFH) (higher than 2FFH (i.e. 0300H to FFFFH for RD devices) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Refer to Figure . For RD devices, accesses to expanded RAM from 100H to 2FFH can only be done thanks to the use of DPTR.
- With <u>EXTRAM = 1</u>, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

6.4. Timer 2

The timer 2 in the TS80C51RX2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 6) and T2MOD register (See Table 7). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and $CP/\overline{RL2}$ (T2CON), as described in the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description.

Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C51RX2 Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

6.4.1. Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 5. In this mode the T2EX pin controls the direction of count.

When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 9).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

	CCON Address 0D8H		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	Rese	et value	0	0	X	0	0	0	0	0	
Sy	nbol	Function	ı								
CF		an interrup	CA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags n interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but an only be cleared by software.								
CR		1	PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA counter off.								
-		Not implen	Not implemented, reserved for future use. ^a								
CCF4		PCA Modu cleared by		rupt flag.	Set by ha	ardware wh	nen a matc	h or captu	are occurs	. Must be	
CCF3		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be	
CCF2		PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.							. Must be		
CCF1		PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must cleared by software.							. Must be		
CCF0		PCA Modu cleared by		rupt flag.	Set by ha	ardware wł	nen a matc	h or captu	are occurs	. Must be	

 Table 9. CCON: PCA Counter Control Register

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

The watchdog timer function is implemented in module 4 (See Figure 10).

The PCA interrupt system is shown in Figure 8

CCA

Table 10. CCAPMn: PCA Modules Compare/Capture Control Register	Table 10). CCAPMn: PC	A Modules	Compare/Capture	Control Register
--	----------	---------------	------------------	------------------------	-------------------------

 PMn Address a = 0 - 4 CCAPM CCAPM CCAPM		40=0DAH 41=0DBH 42=0DCH 43=0DDH 44=0DEH									
			-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	
Reset value			Х	0	0	0	0	0	0	0	
Syı	nbol	Function	l								
-		Not implen	nented, res	served for	future use.	a					
ECOM	In	Enable Cor	nparator. I	ECOMn =	1 enables	the compa	rator func	tion.			
CAPP	n	Capture Po	Capture Positive, CAPPn = 1 enables positive edge capture.								
CAPN	n	Capture Ne	Negative, CAPNn = 1 enables negative edge capture.								
MATn	1	Match. Wh register cau							le's compa	re/capture	
TOGn		Toggle. Wh register cau				PCA cou	nter with	this modul	le's compa	re/capture	
PWMn Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.											
ECCF	n	Enable CCI an interrupt		. Enables o	compare/ca	pture flag	CCFn in t	he CCON	register to	o generate	

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function	
0	0	0	0	0	0	0	No Operation	
X	1	0	0	0	0	Х	16-bit capture by a positive-edge trigger on CEXn	
X	0	1	0	0	0	Х	16-bit capture by a negative trigger CEXn	
X	1	1	0	0	0	Х	16-bit capture by a transition on CEXn	
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode.	
1	0	0	1	1	0	Х	16-bit High Speed Output	
1	0	0	0	0	1	0	8-bit PWM	
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)	

Table 11. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 12 & Table 13)

6.5.3. High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 11).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

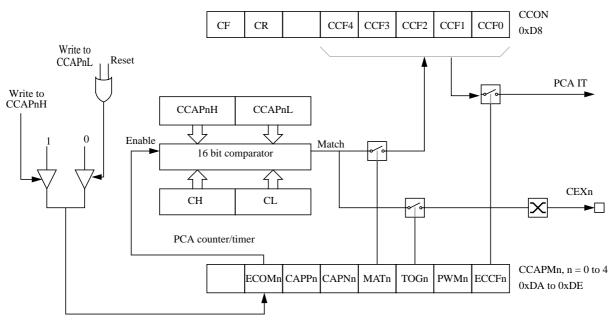


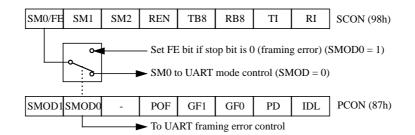
Figure 11. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.6. TS80C51Rx2 Serial I/O Port

The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous


Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

6.6.1. Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 13).

Figure 13. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 16.) bit is set.

Table 20. IP Register

IP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	PPC	PT2	PS	PT1	PX1	PT0	PX0

Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value read from	this bit is indet	erminate. Do not	set this bit.					
6	PPC	PCA interrupt priority Refer to PPCH for pr	A interrupt priority bit Refer to PPCH for priority level.							
5	PT2		ner 2 overflow interrupt Priority bit Refer to PT2H for priority level.							
4	PS	Serial port Priority bit Refer to PSH for priority level.								
3	PT1		Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.							
2	PX1	External interrupt 1 Pri Refer to PX1H for pr								
1	PT0		Fimer 0 overflow interrupt Priority bit Refer to PT0H for priority level.							
0	PX0	External interrupt 0 Pri Refer to PX0H for pr								

Reset Value = X000 0000b Bit addressable

Table 24. WDTPRG Register

7	6		5	4	3	2	1	0					
T4	Т3		T2	T1	TO	<u>82</u>	<u>81</u>	S0					
Bit Number	Bit Mnemonic				Descrip	tion							
7	T4												
6	Т3												
5	T2	Reserve Do 1	Reserved Do not try to set or clear this bit.										
4	T1												
3	TO												
2	S2	WDT Ti	ime-out sele	ct bit 2									
1	S1	WDT Ti	ime-out sele	ct bit 1									
0	SO	WDT Ti	ime-out sele	ct bit 0									
		$\frac{S2}{0}$ 0 0 0 1 1 1 1 1	<u>S1</u> 0 1 1 0 0 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d Time-out) machine cycles, 1) machine cycles, 3) machine cycles, 6) machine cycles, 1) machine cycles, 2) machine cycles, 5) machine cycles, 1) machine cycles, 2	2.7 ms @ 12 MHz 5.5 ms @ 12 MHz 31 ms @ 12 MHz 62 ms @ 12 MHz 42 ms @ 12 MHz .05 s @ 12 MHz							

Reset value XXXX X000

6.10.2. WDT during Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the TS80C51Rx2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the TS80C51Rx2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

WDTPRG Address (0A7h)

8.3. EPROM Programming

8.3.1. Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 18.).

Control and program signals must be held at the levels indicated in Table 30.

8.3.2. Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals: RST, <u>PSEN</u>, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/ PROG	EA /VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	Г	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Г	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	Г	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Г	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Г	12.75V	1	0	1	1	0

Table 30. EPROM Set-Up Modes

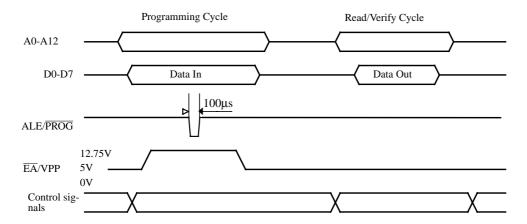


Figure 19. Programming and Verification Signal's Waveform

8.4. EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

8.4.1. Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

10. Electrical Characteristics

10.1. Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	-40°C to 85°C
Storage Temperature	$-65^{\circ}C$ to $+ 150^{\circ}C$
Voltage on V _{CC} to V _{SS}	-0.5 V to + 7 V
Voltage on V _{PP} to V _{SS}	-0.5 V to + 13 V
Voltage on Any Pin to V _{SS}	-0.5 V to V_{CC} + 0.5 V
Power Dissipation	$1 W^{(2)}$

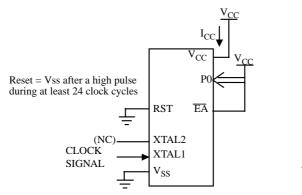
NOTES

1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

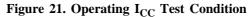
2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

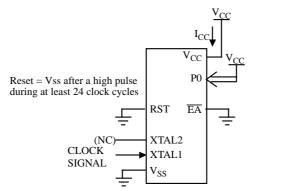
10.2. Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:


Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)


Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.


This is much more representative of the real operating Icc.

All other pins are disconnected.

All other pins are disconnected.

Figure 22. I_{CC} Test Condition, Idle Mode

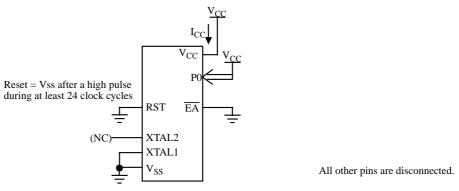


Figure 23. I_{CC} Test Condition, Power-Down Mode

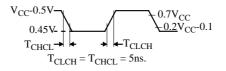
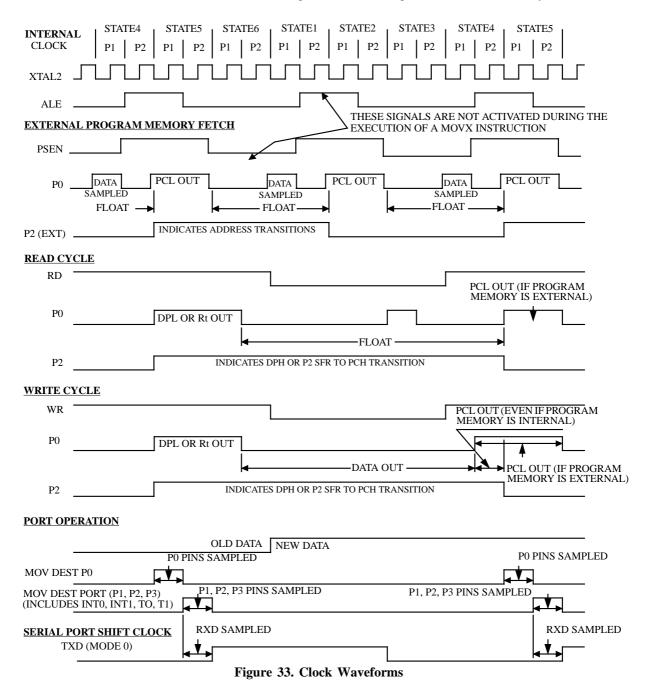


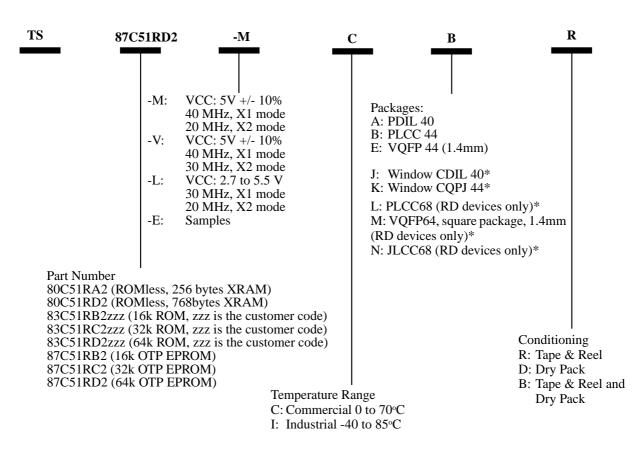
Figure 24. Clock Signal Waveform for $I_{\mbox{\scriptsize CC}}$ Tests in Active and Idle Modes

Speed		-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns


Table 40. AC Parameters for a Fix Clock

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

10.5.15. Clock Waveforms


Valid in normal clock mode. In X2 mode XTAL2 signal must be changed to XTAL2 divided by two.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

11. Ordering Information

(*) Check with Atmel Wireless & Microcontrollers Sales Office for availability. Ceramic packages (J, K, N) are available for proto typing, not for volume production. Ceramic packages are available for OTP only.

Code	-M	-V	-L	Unit
Standard Mode, oscillator frequency	40	40	30	MHz
Standard Mode, internal frequency	40	40	30	
X2 Mode, oscillator frequency	20	30	20	MHz
X2 Mode, internal equivalent frequency	40	60	40	