

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts87c51rd2-vil

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber	T		
Mnemonic	DIL	LCC	VQFP 1.4	Туре	Name And Function	
V _{SS}	20	22	16	Ι	Ground: 0V reference	
Vss1		1	39	Ι	Optional Ground: Contact the Sales Office for ground connection.	
V _{CC}	40	44	38	Ι	Power Supply: This is the power supply voltage for normal, idle and power-down operation	
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.	
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Por pins that have 1s written to them are pulled high by the internal pull-ups a can be used as inputs. As inputs, Port 1 pins that are externally pulled low v source current because of the internal pull-ups. Port 1 also receives the low-or address byte during memory programming and verification. Alternate functions for Port 1 include:	
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout	
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control	
	3	4	42	Ι	ECI (P1.2): External Clock for the PCA	
	4	5	43	I/O	CEX0 (P1.3): Capture/Compare External I/O for PCA module 0	
	5	6	44	I/O	CEX1 (P1.4): Capture/Compare External I/O for PCA module 1	
	6	7	45	I/O	CEX0 (P1.5): Capture/Compare External I/O for PCA module 2	
	7	8	46	I/O	CEX0 (P1.6): Capture/Compare External I/O for PCA module 3	
	8	9	47	I/O	CEX0 (P1.7): Capture/Compare External I/O for PCA module 4	
P2.0-P2.7	21-28	24-31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins (P2.0 to P2.5) receive the high order address bits during EPROM programming and verification:	
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Some Port 3 pins (P3.4 to P3.5) receive the high order address bits during EPROM programming and verification. Port 3 also serves the special features of the 80C51 family, as listed below.	
	10	11	5	I	RXD (P3.0): Serial input port	
	11	13	7	0	TXD (P3.1): Serial output port	
	12	14	8	I	INTO (P3.2): External interrupt 0	
	13	15	9	I	INT1 (P3.3): External interrupt 1	
	14	16	10	I	T0 (P3.4): Timer 0 external input	
	15	17	11	I	T1 (P3.5): Timer 1 external input	
	16	18	12	0	WR (P3.6): External data memory write strobe	
	17	19	13	0	RD (P3.7): External data memory read strobe	

Reset	9	10	4	Ι	Reset: A high on this pin for two machine cycles while the oscillator is running,
					resets the device. An internal diffused resistor to $V_{\mbox{\scriptsize SS}}$ permits a power-on reset
					using only an external capacitor to V_{CC} . If the hardware watchdog reaches its
					time-out, the reset pin becomes an output during the time the internal reset is
					activated.

Mnemonic]	Pin Nu	mber	Туре	Name And Function
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, \overrightarrow{PSEN} is activated twice each machine cycle, except that two \overrightarrow{PSEN} activations are skipped during each access to external data memory. \overrightarrow{PSEN} is not activated during fetches from internal program memory.
EA/V _{pp}	31	35	29	I	External Access Enable/Programming Supply Voltage: $\overline{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) $\overline{\text{EA}}$ must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, $\overline{\text{EA}}$ will be internally latched on Reset.
XTAL1	19	21	15	Ι	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6. Clock-Out Mode $C/\overline{T2} = 0$

Table 6. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			
Bit Number	Bit Mnemonic		Description							
7	TF2	Timer 2 overflow Fla Must be cleared Set by hardware	Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.							
6	EXF2	Timer 2 External Fl Set when a captu When set, causes Must be cleared	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)							
5	RCLK	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.								
4	TCLK	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.								
3	EXEN2	Timer 2 External En Clear to ignore e Set to cause a caj clock the serial port.	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.							
2	TR2	Timer 2 Run contro Clear to turn off Set to turn on tim	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.							
1	C/T2#	Timer/Counter 2 sel Clear for timer of Set for counter of	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.							
0	CP/RL2#	Timer 2 Capture/Re If RCLK=1 or To Clear to auto-relo Set to capture on	load bit CLK=1, CP/RL2# ad on timer 2 ove negative transition	is ignored and time rflows or negative ns on T2EX pin if !	er is forced to auto transitions on T2E EXEN2=1.	o-reload on timer 2 X pin if EXEN2=1	overflow. l.			

Reset Value = 0000 0000b Bit addressable

Figure 7. PCA Timer/Counter

Table	8.	CMOD:	PCA	Counter	Mode	Register
abic	υ.	CITOD.	IUII	Counter	mout	Register

CMOD Address 0D9H		CI	DL	WDTE	-	-	-	CPS1	CPS0	ECF	
	Rese	et value	()	0	Х	Х	Х	0	0	0
Syı	nbol	Funct	ion								
CIDL		Counter idle Mo	Counter Idle control: $CIDL = 0$ programs the PCA Counter to continue functioning during idle Mode. $CIDL = 1$ programs it to be gated off during idle.								
WDTE	C	Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.									
-		Not imp	Not implemented, reserved for future use. ^a								
CPS1		PCA Co	ount Puls	se Se	lect bit 1.						
CPS0		PCA Co	ount Puls	se Se	lect bit 0.						
		CPS1	CPS0	Sele	cted PCA	input. ^b					
		0	0	Inte	rnal clock	$f_{osc}/12$ (C	Dr f _{osc} /6 in	X2 Mode	e).		
		0	1	Inte	rnal clock	$f_{osc}/4$ (Or	f _{osc} /2 in	X2 Mode)			
		1	0	Tim	er 0 Overf	low					
		1	1	Exte	ernal clock	at ECI/P1	.2 pin (ma	ax rate = f	osc/ 8)		
ECF		PCA Ei interrup	nable Co t. ECF =	unter = 0 di	Overflow sables that	interrupt: t function	ECF = 1 of CF.	enables Cl	F bit in C	CON to ge	enerate an

User software should not write 1s to reserved bits. These bits may be used in future 8051 family a. products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate. b. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 7 and Table 8).

- The CIDL bit which allows the PCA to stop during idle mode. •
- The WDTE bit which enables or disables the watchdog function on module 4. •

The CCON SFR contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 9).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

CC Addres	CCON Address 0D8H		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
	Rese	et value	0	0	X	0	0	0	0	0
Syı	nbol	Function	l							
CF		PCA Count an interrup can only be	PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags un interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.							
CR		PCA Count by software	PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA counter off.							
-		Not implen	Not implemented, reserved for future use. ^a							
CCF4		PCA Modu cleared by	ile 4 inter software.	rupt flag.	Set by ha	rdware wh	en a matc	h or captı	ire occurs.	Must be
CCF3		PCA Modu cleared by	ile 3 inter software.	rupt flag.	Set by ha	rdware wh	en a matc	h or captı	ire occurs.	Must be
CCF2		PCA Modu cleared by	ile 2 inter software.	rupt flag.	Set by ha	rdware wh	en a matc	h or captu	ire occurs.	Must be
CCF1		PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must l cleared by software.							Must be	
CCF0		PCA Modu cleared by	ile 0 inter software.	rupt flag.	Set by ha	rdware wh	en a matc	h or captu	ire occurs.	Must be

 Table 9. CCON: PCA Counter Control Register

a. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

The watchdog timer function is implemented in module 4 (See Figure 10).

The PCA interrupt system is shown in Figure 8

6.6. TS80C51Rx2 Serial I/O Port

The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous

Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

6.6.1. Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 13).

Figure 13. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 16.) bit is set.

Table 17. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD) -	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description							
7	SMOD1	Serial port Mode bi Set to select dou	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.							
6	SMOD0	Serial port Mode bi Clear to select S Set to to select F	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.							
5	-	Reserved The value read fr	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF	Power-Off Flag Clear to recogniz Set by hardware	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.							
3	GF1	General purpose Fla Cleared by user for g	ng For general purpose eneral purpose usa	e usage. ge.						
2	GF0	General purpose Fla Cleared by user for g	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.							
1	PD	Power-Down mode Cleared by hardy Set to enter powe	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode bit Clear by hardwar Set to enter idle	e when interrupt on node.	or reset occurs.						

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

6.7. Interrupt System

The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 16.

WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the order in INTO, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.

Figure 16. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 19.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 20.) and in the Interrupt Priority High register (See Table 21.). shows the bit values and priority levels associated with each combination.

The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.

Table 21. IPH Register

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0			
-	РРСН	РТ2Н	PSH	PT1H	PX1H	РТОН	РХОН			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value read f	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	РРСН	PCA interrupt prio <u>PPCH</u> 0 1 1	rity bit high. <u>PPC</u> Prio 0 1 0 1	<u>rity Level</u> Lowest Highest						
5	РТ2Н	Timer 2 overflow in <u>PT2H</u> 0 1 1 1	terrupt Priority E <u>PT2</u> 0 1 0 1	ligh bit <u>Priority Level</u> Lowest Highest						
4	PSH	Serial port Priority PSH 0 1 1	High bit <u>PS</u> 0 1 0 1	<u>Priority Level</u> Lowest Highest						
3	PT1H	Timer 1 overflow in <u>PT1H</u> 0 0 1 1 1	terrupt Priority E <u>PT1</u> 0 1 0 1 1	ligh bit <u>Priority Level</u> Lowest Highest						
2	PX1H	External interrupt 1 <u>PX1H</u> 0 0 1 1 1	l Priority High bi <u>PX1</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest						
1	РТОН	Timer 0 overflow in <u>PT0H</u> 0 1 1	terrupt Priority E <u>PTO</u> 0 1 0 1 1	ligh bit <u>Priority Level</u> Lowest Highest						
0	РХ0Н	External interrupt (<u>PX0H</u> 0 0 1 1 1) Priority High bit <u>PX0</u> 0 1 0 1 1	t <u>Priority Level</u> Lowest Highest						

Reset Value = X000 0000b Not bit addressable

6.11. ONCETM Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C51Rx2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C51Rx2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and $\overline{\text{PSEN}}$ is high.
- Hold ALE low as RST is deactivated.

While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 25. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

9. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 31. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel Wireless & Microcontrollers
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2
60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

Table 31. Signature Bytes Content

10. Electrical Characteristics

10.1. Absolute Maximum Ratings ⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	-40°C to 85°C
Storage Temperature	-65°C to + 150°C
Voltage on V _{CC} to V _{SS}	-0.5 V to + 7 V
Voltage on V _{PP} to V _{SS}	-0.5 V to + 13 V
Voltage on Any Pin to V _{SS}	-0.5 V to V_{CC} + 0.5 V
Power Dissipation	$1 W^{(2)}$

NOTES

1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

10.2. Power consumption measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel Wireless & Microcontrollers new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel Wireless & Microcontrollers presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

NOTES

1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; $\overline{EA} = RST = Port \ 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used.

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C; Port $0 = V_{CC}$; $\overline{EA} = RST = V_{SS}$ (see Figure 22.).

3. Power Down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{SS}$, PORT $0 = V_{CC}$; XTAL2 NC.; RST = V_{SS} (see Figure 23.).

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{OL}s$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

Port 0: 26 mA

Ports 1, 2, 3 and 4 and 5 when available: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 7. For other values, please contact your sales office.

8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 24.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

All other pins are disconnected.

Figure 20. I_{CC} Test Condition, under reset

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	x	X	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 41. AC Parameters	for	a	Variable	Clock:	derating	formula
-------------------------	-----	---	----------	---------------	----------	---------

10.5.5. External Data Memory Write Cycle

Figure 26. External Data Memory Write Cycle

10.5.6. External Data Memory Read Cycle

Figure 27. External Data Memory Read Cycle

10.5.7. Serial Port Timing - Shift Register Mode

Table 42. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 43. AC Parameters for a Fix Clock

Speed	-1 40 N	M MHz	- X2 n 30 N 60 MH	V node ⁄IHz z equiv.	- standar 40 N	V •d mode ⁄IHz	X2 m 20 M 40 MH	L node ⁄IHz z equiv.	standar 30 N	L ·d mode ⁄IHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

10.5.9. EPROM Programming and Verification Characteristics

TA = 21°C to 27°C; $V_{SS} = 0V$; $V_{CC} = 5V \pm 10\%$ while programming. V_{CC} = operating range while verifying

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

Table 45. EPROM Programming Parameters

10.5.10. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

Figure 29. EPROM Programming and Verification Waveforms

10.5.11. External Clock Drive Characteristics (XTAL1)

Table	46.	AC	Parameters
-------	-----	----	-------------------

Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

10.5.12. External Clock Drive Waveforms

Figure 30. External Clock Drive Waveforms

10.5.13. AC Testing Input/Output Waveforms

Figure 31. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

10.5.14. Float Waveforms

Figure 32. Float Waveforms