E. Fenesas Electronics America Inc - <u>R7FS5D57A3A01CFP#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	76
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d57a3a01cfp-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

S5D5 Microcontroller Group

Datasheet

Leading performance 120-MHz ARM[®] Cortex[®]-M4 core, up to 1-MB code flash memory, 384-KB SRAM, Capacitive Touch Sensing Unit, Ethernet MAC Controller, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.

Features

ARM Cortex-M4 Core with Floating Point Unit (FPU)

- ARMv7E-M architecture with DSP instruction set
- Maximum operating frequency: 120 MHz
- Support for 4-GB address space
- On-chip debugging system: JTAG, SWD, and ETM
- Boundary scan and ARM Memory Protection Unit (MPU)
- Memory
 - Up to 1-MB code flash memory (40 MHz zero wait states)
 - 32-KB data flash memory (up to 100,000 erase/write cycles)
 - Up to 384-KB SRAM
 - Flash Cache (FCACHE)
 - Memory Protection Units (MPU)
 - Memory Mirror Function (MMF)
 128-bit unique ID

■ Connectivity

- Ethernet MAC Controller (ETHERC)
- Ethernet DMA Controller (EDMAC)
- USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver
- Serial Communications Interface (SCI) with FIFO \times 10
- Serial Peripheral Interface (SPI) $\times 2$
- I²C bus interface (IIC) \times 3
- CAN module (CAN) $\times 2$
- Serial Sound Interface Enhanced (SSIE)
- SD/MMC Host Interface (SDHI) × 2
- Quad Serial Peripheral Interface (QSPI)
- IrDA interface
- Sampling Rate Converter (SRC)
- External address space
 8- or 16-bit bus space is selectable per area
 SDRAM support

Analog

- 12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits each × 2
- 12-bit D/A Converter (DAC12) × 2
- High-Speed Analog Comparator (ACMPHS) × 6
- Temperature Sensor (TSN)

Timers

- General PWM Timer 32-Bit Enhanced High Resolution (GPT32EH) × 4
- General PWM Timer 32-Bit Enhanced (GPT32E) × 4
- General PWM Timer 32-Bit (GPT32) × 6
- Asynchronous General-Purpose Timer (AGT) × 2
- Watchdog Timer (WDT)

Safety

Jul 5, 2017

- ECC in SRAM
- SRAM parity error check
- Flash area protection
- ADC self-diagnosis function
- Clock Frequency Accuracy Measurement Circuit (CAC)
- Cyclic Redundancy Check (CRC) calculator
- Data Operation Circuit (DOC)
- Port Output Enable for GPT (POEG)
- Independent Watchdog Timer (IWDT)
- GPIO readback level detection
- Register write protection
- Main oscillator stop detection

R01DS0317EU0110 Rev.1.10

Illegal memory access

System and Power Management

- Low power modes
- Realtime Clock (RTC) with calendar and VBATT support
- Event Link Controller (ELC)
- DMA Controller (DMAC) × 8
- Data Transfer Controller (DTC)
- Key Interrupt Function (KINT)
- Power-on reset
- Low Voltage Detection (LVD) with voltage settings
- Security and Encryption
- AES128/192/256
- 3DES/ARC4
- SHA1/SHA224/SHA256
- GHASH
- RSA/DSA

• True Random Number Generator (TRNG)

Human Machine Interface (HMI)

- Capacitive Touch Sensing Unit (CTSU)
- Parallel Data Capture Unit (PDC)

Multiple Clock Sources

- Main clock oscillator (MOSC) (8 to 24 MHz)
- Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- Independent Watchdog Timer OCO (15 kHz)
- Clock trim function for HOCO/MOCO/LOCO

Clock out support

- General-Purpose I/O Ports
 - Up to 110 input/output pins
 - Up to 1 CMOS input
 - Up to 109 CMOS input/output
 - Up to 21 input/output 5 V tolerant
 - Up to 18 high current (20 mA)

Operating Voltage

RENESAS

• VCC: 2.7 to 3.6 V

Operating Temperature and Packages

- Ta = -40° C to $+85^{\circ}$ C
 - 145-pin LGA (7 mm \times 7 mm, 0.5 mm pitch)
- $Ta = -40^{\circ}C \text{ to } +105^{\circ}C$
- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)

Page 2 of 100

Feature	Functional description				
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and be used as the condition for detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in User's Manual.				
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User's Manual.				

Table 1.3 System (2 of 2)

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User's Manual.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User's Manual.
DMA Controller (DMAC)	An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User's Manual.

Table 1.6 External bus interface

Feature	Functional description
External buses	 CS area (EXBIU): Connected to the external devices (external memory interface) SDRAM area (EXBIU): Connected to the SDRAM (external memory interface) QSPI area (EXBIUT2): Connected to the QSPI (external device interface).

Table 1.7 Timers (1 of 2)

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 32-bit timer with 14 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User's Manual.
Port Output Enable for GPT (POEG)	Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in User's Manual.
Asynchronous General-Purpose Timer (AGT)	The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and can be accessed with the AGT register. See section 25, Asynchronous General-Purpose Timer (AGT) in User's Manual.

Feature	Functional description
Ethernet MAC (ETHERC)	One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3 Media Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards. The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be transferred without using the CPU. See section 29, Ethernet MAC Controller (ETHERC) in User's Manual.
SD/MMC Host Interface (SDHI)	The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes. See section 41, SD/MMC Host Interface (SDHI) in User's Manual.

Table 1.9 Analog

Feature	Functional description			
12-Bit A/D Converter (ADC12)	Up to two successive approximation 12-Bit A/D Converters are provided. In unit 0, up to 13 analog input channels are selectable. In unit 1, up to 9 analog input channels, the temperatu sensor output, and an internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it possibl to optimize the tradeoff between speed and resolution in generating a digital value. See section 45, 12-Bit A/D Converter (ADC12) in User's Manual.			
12-Bit D/A Converter (DAC12)	The DAC12 D/A converts data and includes an output amplifier. See section 46, 12-Bit D/A Converter (DAC12) in User's Manual.			
Temperature Sensor (TSN)	The on-chip temperature sensor can determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC12 for conversion and can also be used by the end application. See section 47, Temperature Sensor (TSN) in User's Manual.			
High-Speed Analog Comparator (ACMPHS)	Analog comparators can be used to compare a test voltage with a reference voltage and to provide a digital output based on the conversion result. Both the test and reference voltages can be provided to the comparator from internal sources such as the DAC12 output and internal reference voltage, and an external source. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 48, High-Speed Analog Comparator (ACMPHS) in User's Manual.			

Table 1.10 Human machine interfaces

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do not come into direct contact with the electrodes. See section 49, Capacitive Touch Sensing Unit (CTSU) in User's Manual.

Table 1.11 Graphics

Feature	Functional description
Parallel Data Capture (PDC) unit	One Parallel Data Capture (PDC) unit is provided to communicate with external I/O devices, including image sensors, and to transfer parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 42, Parallel Data Capture Unit (PDC) in User's Manual.

Figure 1.2 Part numbering scheme

Table 1.14 Product list

Product part number	Orderable part number	Package	Code flash	Data flash	SRAM	Operating temperature
R7FS5D57C2A01CLK	R7FS5D57C2A01CLK#AC0	PTLG0145KA-A	1 MB	32 KB	384 KB	-40 to +85°C
R7FS5D57C3A01CFB	R7FS5D57C3A01CFB#AA0	PLQP0144KA-B				-40 to +105°C
R7FS5D57C3A01CFP	R7FS5D57C3A01CFP#AA0	PLQP0100KB-B				-40 to +105°C
R7FS5D57A2A01CLK	R7FS5D57A2A01CLK#AC0	PTLG0145KA-A	512 KB			-40 to +85°C
R7FS5D57A3A01CFB	R7FS5D57A3A01CFB#AA0	PLQP0144KA-B				-40 to +105°C
R7FS5D57A3A01CFP	R7FS5D57A3A01CFP#AA0	PLQP0100KB-B				-40 to +105°C

Function	Signal	I/O	Description
ETHERC	REF50CK0	Input	50-MHz reference clock. This pin inputs reference signal for
		Input	transmission/reception timing in RMII mode.
	RIVIIIO_CR3_DV	Input	and RMII0_RXD0 in RMII mode
	RMII0_TXD0, RMII0_TXD1	Output	2-bit transmit data in RMII mode
	RMII0_RXD0, RMII0_RXD1	Input	2-bit receive data in RMII mode
	RMII0_TXD_EN	Output	Output pin for data transmit enable signal in RMII mode
	RMII0_RX_ER	Input	Indicates an error occurred during reception of data in RMII mode
	ET0_CRS	Input	Carrier detection/data reception enable signal
	ET0_RX_DV	Input	Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0
	ET0_EXOUT	Output	General-purpose external output pin
	ET0_LINKSTA	Input	Input link status from the PHY-LSI
	ET0_ETXD0 to ET0_ETXD3	Output	4 bits of MII transmit data
	ET0_ERXD0 to ET0_ERXD3	Input	4 bits of MII receive data
	ET0_TX_EN	Output	Transmit enable signal. Functions as signal indicating that transmit data is ready on ET0_ETXD3 to ET0_ETXD0
	ET0_TX_ER	Output	Transmit error pin. Functions as signal notifying the PHY_LSI of an error during transmission
	ET0_RX_ER	Input	Receive error pin. Functions as signal to recognize an error during reception
	ET0_TX_CLK	Input	Transmit clock pin. This pin inputs reference signal for output timing from ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER
	ET0_RX_CLK	Input	Receive clock pin. This pin inputs reference signal for input timing to ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER
	ET0_COL	Input	Input collision detection signal
	ET0_WOL	Output	Receive Magic packets
	ET0_MDC	Output	Output reference clock signal for information transfer through ET0_MDIO
	ET0_MDIO	I/O	Input or output bidirectional signal for exchange of management data with PHY-LSI
SDHI	SD0CLK, SD1CLK	Output	SD clock output pins
	SD0CMD, SD1CMD	I/O	Command output pin and response input signal pins
	SD0DAT0 to SD0DAT7, SD1DAT0 to SD1DAT7	I/O	SD and MMC data bus pins
	SD0CD, SD1CD	Input	SD card detection pins
	SD0WP	Input	SD write-protect signals
Analog power supply	AVCC0	Input	Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin.
	AVSS0	Input	Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin.
	VREFH0	Input	Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002.
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to VSS when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002
	VREFH	Input	Analog reference voltage supply pin for the ADC12 (unit 1) and D/A Converter. Connect this pin to VCC when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter.
	VREFL	Input	Analog reference ground pin for the ADC12 and D/A Converter. Connect this pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter.

Table 1.16Pin functions (4 of 5)

I/O $V_{OH},\,V_{OL},$ and Other Characteristics 2.2.4

Item		Symbol	Min	Тур	Мах	Unit	Test conditions
Output voltage	IIC	V _{OL}	-	-	0.4	V	I _{OL} = 3.0 mA
		V _{OL}	-	-	0.6		I _{OL} = 6.0 mA
	IIC*1	V _{OL}	-	-	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		V _{OL}	-	0.4	-		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	ETHERC	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.4		I _{OL} = 1.0 mA
	Ports P205, P206, P407 to P415, P602, P708 to P713 (total of 18	V _{OH}	VCC - 1.0	-	-		I _{OH} = -20 mA VCC = 3.3 V
		V _{OL}	-	-	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Other output pins	V _{OH}	VCC - 0.5	-	-		I _{OH} = -1.0 mA
		V _{OL}	-	-	0.5		I _{OL} = 1.0 mA
Input leakage current	RES	I _{in}	-	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Port P200		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5 V-tolerant ports	I _{TSI}	-	-	5.0	μA	V _{in} = 0 V V _{in} = 5.5 V
	Other ports (except for port P200)		-	-	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up MOS current	Ports P0 to PB	Ι _ρ	-300	-	-10	μΑ	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, and ports P014, P015, P400, P401, P511, P512	C _{in}	-	-	16	pF	Vbias = $0V$ Vamp = 20 mV f = 1 MHz
	Other input pins		-	-	8		$I_a = 25^{\circ}$

Table 2.6	I/O V _{OH} , V _{OL}	, and other	characteristics
-----------	---------------------------------------	-------------	-----------------

 Note 1.
 SCL0_A, SDA0_A (total 2 pins).

 Note 2.
 This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.

 The selected driving ability is retained in Deep Software Standby mode.

Figure 2.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function enabled (reference data)

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.8 Rise and fall gradient characteristics

ltem		Symbol	Min	Тур	Max	Unit	Test conditions
VCC rising gradient	Voltage monitor 0 reset disabled at startup	SrVCC	0.0084	-	20	ms/V	-
	Voltage monitor 0 reset enabled at startup		0.0084	-	-		-
	SCI/USB boot mode*1		0.0084	-	20		-
VCC falling gradient*	2	SfVCC	0.0084	-	-	ms/V	-

Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit. Note 2. This applies when VBATT is used.

Table 2.9 Rise and fall gradient and ripple frequency characteristics

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

ltem	Symbol	Min	Тур	Мах	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.6 $V_{r (VCC)} \leq VCC \times 0.2$
		-	-	1	MHz	Figure 2.6 $V_{r (VCC)} \leq VCC \times 0.08$
		-	-	10	MHz	Figure 2.6 $V_{r (VCC)} \leq VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Item		Symbol	Min	Тур	Мах	Unit
Operation frequency	y System clock (ICLK)*2		29.4	-	36.1	kHz
	Peripheral module clock (PCLKA)*2		-	-	36.1	
	Peripheral module clock (PCLKB)*2		-	-	36.1	
	Peripheral module clock (PCLKC)*2,*3		-	-	36.1	
	Peripheral module clock (PCLKD)*2		-	-	36.1	
	Flash interface clock (FCLK)*1, *2		29.4	-	36.1	
	External bus clock (BCLK)*2		-	-	36.1	
	EBCLK pin output		-	-	36.1	

 Table 2.12
 Operation frequency value in Subosc-speed mode

Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.

Note 2. See section 9, Clock Generation Circuit in User's Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies.

Note 3. The ADC12 cannot be used.

2.3.2 Clock Timing

Table 2.13 Clock timing ex	cept for sub-clock oscillator (1 of 2)
----------------------------	--

Item	Symbol	Min	Тур	Max	Unit	Test conditions
EBCLK pin output cycle time	t _{Bcyc}	16.6	-	-	ns	Figure 2.7
EBCLK pin output high pulse width	t _{CH}	3.3	-	-	ns	
EBCLK pin output low pulse width	t _{CL}	3.3	-	-	ns	
EBCLK pin output rise time	t _{Cr}	-	-	5.0	ns	
EBCLK pin output fall time	t _{Cf}	-	-	5.0	ns	
SDCLK pin output cycle time	t _{SDcyc}	8.33	-	-	ns	
SDCLK pin output high pulse width	t _{CH}	1.0	-	-	ns	
SDCLK pin output low pulse width	t _{CL}	1.0	-	-	ns	
SDCLK pin output rise time	t _{Cr}	-	-	3.0	ns	
SDCLK pin output fall time	t _{Cf}	-	-	3.0	ns	
EXTAL external clock input cycle time	t _{EXcyc}	41.66	-	-	ns	Figure 2.8
EXTAL external clock input high pulse width	t _{EXH}	15.83	-	-	ns	
EXTAL external clock input low pulse width	t _{EXL}	15.83	-	-	ns	
EXTAL external clock rise time	t _{EXr}	-	-	5.0	ns	
EXTAL external clock fall time	t _{EXf}	-	-	5.0	ns	
Main clock oscillator frequency	f _{MAIN}	8	-	24	MHz	-
Main clock oscillation stabilization wait time (crystal) *1	t _{MAINOSCWT}	-	-	_*1	ms	Figure 2.9
LOCO clock oscillation frequency	f _{LOCO}	29.4912	32.768	36.0448	kHz	-
LOCO clock oscillation stabilization wait time	t _{LOCOWT}	-	-	60.4	μs	Figure 2.10
ILOCO clock oscillation frequency	f _{ILOCO}	13.5	15	16.5	kHz	-
MOCO clock oscillation frequency	F _{MOCO}	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilization wait time	t _{MOCOWT}	-	-	15.0	μs	-

Figure 2.15 Software Standby mode cancellation timing

Figure 2.37 AGT input/output timing

Figure 2.38 ADC12 trigger input timing

Figure 2.39 Key interrupt input timing

2.3.8 PWM Delay Generation Circuit Timing

Table 2.20 PWM Delay Generation Circuit timing

Item	Min	Тур	Max	Unit	Test conditions
Operation frequency	80	-	120	MHz	-
Resolution	-	260	-	ps	PCLKD = 120 MHz
DNL*1	-	±2.0	-	LSB	-

Note 1. This value normalizes the differences between lines in 1-LSB resolution.

2.3.9 CAC Timing

Table 2.21 CAC timing

ltem			Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ tcac*²	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	-	-	ns	-
		t _{PBcyc} > tcac*2		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	-	-	ns	

 Table 2.23
 SCI timing (2)

 Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.

 For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

ltem		Symbol	Min	Мах	Unit	Test conditions
Simple SPI	SCK clock cycle output (master)	t _{SPcyc}	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	65536	t _{Pcyc}	Figure 2.42
	SCK clock cycle input (slave)	-	6 (PCLKA ≤ 60 MHz) 12 (PCLKA > 60 MHz)	65536		
	SCK clock high pulse width	t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise and fall time	t _{SPCKr} , t _{SPCKf}	-	20	ns	
	Data input setup time	t _{SU}	33.3	-	ns	Figure 2.43 to
	Data input hold time	t _H	33.3	-	ns	Figure 2.46
	SS input setup time	t _{LEAD}	1	-	t _{SPcyc}	
	SS input hold time	t _{LAG}	1	-	t _{SPcyc}	
	Data output delay	t _{OD}	-	33.3	ns	
	Data output hold time	t _{OH}	-10	-	ns	
	Data rise and fall time	t _{Dr} , t _{Df}	-	16.6	ns	
	SS input rise and fall time	t _{SSLr} , t _{SSLf}	-	16.6	ns	
	Slave access time	t _{SA}	-	4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz)	t _{Pcyc}	Figure 2.46
	Slave output release time	t _{REL}	-	5 (PCLKA ≤ 60 MHz) 10 (PCLKA > 60 MHz)	t _{Pcyc}	

Note 2. Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.

- Note 3. N is set to an integer from 1 to 8 by the SPCKD register.
- Note 4. N is set to an integer from 1 to 8 by the SSLND register.

PDC Timing 2.3.17

Table 2.32PDC timingConditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.Output load conditions: $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, C = 30 pF

Item		Symbol	Min	Мах	Unit	Test conditions
PDC	PIXCLK input cycle time	t _{PIXcyc}	37	-	ns	Figure 2.74
	PIXCLK input high pulse width	t _{PIXH}	10	-	ns	
	PIXCLK input low pulse width	t _{PIXL}	10	-	ns	
	PIXCLK rise time	t _{PIXr}	-	5	ns	
	PIXCLK fall time	t _{PIXf}	-	5	ns	
	PCKO output cycle time	t _{PCKcyc}	2 × t _{PBcyc}	-	ns	Figure 2.75
	PCKO output high pulse width	t _{РСКН}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns	
	PCKO output low pulse width	t _{PCKL}	$(t_{PCKcyc} - t_{PCKr} - t_{PCKf})/2 - 3$	-	ns	
	PCKO rise time	t _{PCKr}	-	5	ns	
	PCKO fall time	t _{PCKf}	-	5	ns	
	VSYNV/HSYNC input setup time	t _{SYNCS}	10	-	ns	Figure 2.76
	VSYNV/HSYNC input hold time	t _{SYNCH}	5	-	ns	
	PIXD input setup time	t _{PIXDS}	10	-	ns	
	PIXD input hold time	t _{PIXDH}	5	-	ns	

Note 1. t_{PBcyc}: PCLKB cycle.

Figure 2.74 PDC input clock timing

 Table 2.35
 A/D conversion characteristics for unit 0 (2 of 2)

 Conditions: PCLKC = 1 to 60 MHz

Item			Min	Тур	Max	Unit	Test conditions
Quantization error			-	±0.5	-	LSB	-
Resolution			-	-	12	Bits	-
Channel-dedicated sample-and-hold circuits in use* ³ (AN000 to AN002)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	1.06 (0.4 + 0.25)* ²	-	-	μs	 Sampling of channel- dedicated sample-and-hold circuits in 24 states Sampling in 15 states
	Offset error		-	±1.5	±3.5	LSB	AN000 to AN002 = 0.25 V
	Full-scale error		-	±1.5	±3.5	LSB	AN000 to AN002 = VREFH0- 0.25 V
	Absolute accuracy		-	±2.5	±5.5	LSB	-
	DNL differential nonli	nearity error	-	±1.0	±2.0	LSB	-
	INL integral nonlinear	rity error	-	±1.5	±3.0	LSB	-
	Holding characteristic circuits	cs of sample-and hold	-	-	20	μs	-
Dynamic range		0.25	-	VREFH0 - 0.25	V	-	
Channel-dedicated sample-and-hold circuits not in use (AN000 to AN002)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.48 (0.267)*2	-	-	μs	Sampling in 16 states
	Offset error	-	±1.0	±2.5	LSB	-	
	Full-scale error	-	±1.0	±2.5	LSB	-	
	Absolute accuracy	Absolute accuracy			±4.5	LSB	-
	DNL differential nonli	DNL differential nonlinearity error			±1.5	LSB	-
	INL integral nonlinear	rity error	-	±1.0	±2.5	LSB	-
High-precision channels (AN003 to AN007)	Conversion time*1 (operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = $1 \text{k}\Omega$	0.48 (0.267)*2	-	-	μs	Sampling in 16 states
		Max. = 400 Ω	0.40 (0.183)*2	-	-	μs	Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0
	Offset error		-	±1.0	±2.5	LSB	-
	Full-scale error		-	±1.0	±2.5	LSB	-
	Absolute accuracy		-	±2.0	±4.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±1.5	LSB	-
	INL integral nonlinear	rity error	-	±1.0	±2.5	LSB	-
Normal-precision channels (AN016 to AN020)	Conversion time*1 (Operation at PCLKC = 60 MHz)	Permissible signal source impedance Max. = $1 \text{k}\Omega$	0.88 (0.667)*2	-	-	μs	Sampling in 40 states
	Offset error		-	±1.0	±5.5	LSB	-
	Full-scale error		-	±1.0	±5.5	LSB	-
	Absolute accuracy		-	±2.0	±7.5	LSB	-
	DNL differential nonli	nearity error	-	±0.5	±4.5	LSB	-
	INL integral nonlinear	rity error	-	±1.0	±5.5	LSB	-

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

The use of pins AN000 to AN007 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable.

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Note 2. Values in parentheses indicate the sampling time.

Note 3. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.37.

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of \pm 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Item	Min	Тур	Max	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier					
Absolute accuracy	-	-	±24	LSB	Resistive load 2 $M\Omega$
INL	-	±2.0	±8.0	LSB	Resistive load 2 $M\Omega$
DNL	-	±1.0	±2.0	LSB	-
Output impedance	-	8.5	-	kΩ	-
Conversion time	-	-	3.0	μs	Resistive load 2 MΩ, Capacitive load 20 pF
Output voltage range	0	-	VREFH	V	-
With output amplifier					
INL	-	±2.0	±4.0	LSB	-
DNL	-	±1.0	±2.0	LSB	-
Conversion time	-	-	4.0	μs	-
Resistive load	5	-	-	kΩ	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH – 0.2	V	-

Table 2.39 D/A conversion characteristics

Table 2.42	Power-on reset circuit and voltage detection circuit characteristics (2 of 2)
------------	---

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Minimum VCC down time*1	t _{VOFF}	200	-	-	μs	Figure 2.83, Figure 2.84
Response delay	t _{det}	-	-	200	μs	Figure 2.83 to Figure 2.86
LVD operation stabilization time (after LVD is enabled)	t _{d(E-A)}	-	-	10	μs	Figure 2.85,
Hysteresis width (LVD1 and LVD2)	V _{LVH}	- 70 - mV		Figure 2.86		

The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, Note 1. V_{det1}, and V_{det2} for POR and LVD.

The low power function is disabled and DEEPCUT[1:0] = 00b or 01b. The low power function is enabled and DEEPCUT[1:0] = 11b. Note 2.

Note 3.

Figure 2.83 Power-on reset timing

2.13 Flash Memory Characteristics

2.13.1 Code Flash Memory Characteristics

Table 2.46 Code flash memory characteristics

Conditions: Program or erase: FCLK = 4 to 60 MHz Read: FCLK \leq 60 MHz

ltem			FCLK = 4 MHz			20 MHz	≤ FCLK ≤		Test	
		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Programming time	128-byte	t _{P128}	-	0.75	13.2	-	0.34	6.0	ms	
$N_{PEC} \le 100 \text{ times}$	8-KB	t _{P8K}	-	49	176	-	22	80	ms	
	32-KB	t _{P32K}	-	194	704	-	88	320	ms	
Programming time	128-byte	t _{P128}	-	0.91	15.8	-	0.41	7.2	ms	
N _{PEC} > 100 times	8-KB	t _{P8K}	-	60	212	-	27	96	ms	
	32-KB	t _{P32K}	-	234	848	-	106	384	ms	
Erasure time	8-KB	t _{E8K}	-	78	216	-	43	120	ms	
N _{PEC} ≤ 100 times	32-KB	t _{E32K}	-	283	864	-	157	480	ms	
Erasure time	8-KB	t _{E8K}	-	94	260	-	52	144	ms	
N _{PEC} > 100 times	32-KB	t _{E32K}	-	341	1040	-	189	576	ms	
Reprogramming/erasu	ire cycle*4	N _{PEC}	10000*1	-	-	10000*1	-	-	Times	
Suspend delay during	programming	t _{SPD}	-	-	264	-	-	120	μs	
First suspend delay du suspend priority mode	iring erasure in	t _{SESD1}	-	-	216	-	-	120	μs	
Second suspend delay during erasure in suspend priority mode		t _{SESD2}	-	-	1.7	-	-	1.7	ms	
Suspend delay during erasure in erasure priority mode		t _{SEED}	-	-	1.7	-	-	1.7	ms	
Forced stop command	l	t _{FD}	-	-	32	-	-	20	μs	
Data hold time*2		t _{DRP}	10* ^{2, *3}	-	-	10* ^{2, *3}	-	-	Years	
			30*2, *3	-	-	30* ^{2, *3}	-	-		Ta = +85°C

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 3. This result is obtained from reliability testing.

Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.

2.13.2 **Data Flash Memory Characteristics**

Table 2.47Data flash memory characteristicsConditions: Program or erase: FCLK = 4 to 60 MHz

Read: FCLK ≤ 60 MHz

			FCLK = 4 MHz			20 MHz ≤ FCLK ≤ 60 MHz				Test
Item		Symbol	Min	Тур	Max	Min	Тур	Max	Unit	conditions
Programming time	4-byte	t _{DP4}	-	0.36	3.8	-	0.16	1.7	ms	
	8-byte	t _{DP8}	-	0.38	4.0	-	0.17	1.8		
	16-byte	t _{DP16}	-	0.42	4.5	-	0.19	2.0		
Erasure time	64-byte	t _{DE64}	-	3.1	18	-	1.7	10	ms	
	128-byte	t _{DE128}	-	4.7	27	-	2.6	15		
	256-byte	t _{DE256}	-	8.9	50	-	4.9	28		
Blank check time	4-byte	t _{DBC4}	-	-	84	-	-	30	μs	
Reprogramming/erasure cycle*1		N _{DPEC}	125000* ²	-	-	125000* ²	-	-	-	
Suspend delay during	4-byte	t _{DSPD}	-	-	264	-	-	120	μs	
programming	8-byte		-	-	264	-	-	120		
	16-byte		-	-	264	-	-	120		
First suspend delay during erasure in suspend priority mode	64-byte	t _{DSESD1}	-	-	216	-	-	120	μs	
	128-byte		-	-	216	-	-	120	-	
	256-byte		-	-	216	-	-	120		
Second suspend delay during erasure in suspend priority mode	64-byte	t _{DSESD2}	-	-	300	-	-	300	μs	
	128-byte		-	-	390	-	-	390		
	256-byte		-	-	570	-	-	570		
Suspend delay during	64-byte	t _{DSEED}	-	-	300	-	-	300	μs	
erasing in erasure priority mode	128-byte		-	-	390	-	-	390		
	256-byte		-	-	570	-	-	570		
Forced stop command		t _{FD}	-	-	32	-	-	20	μs	
Data hold time*3		t _{DRP}	10*3,*4	-	-	10*3,*4	-	-	Year	
			30*3,*4	-	-	30*3,*4	-	-]	Ta = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.

This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 Note 2. to the minimum value.

Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

This result is obtained from reliability testing. Note 4.

2.14 **Boundary Scan**

Table 2.48	Boundary scan	characteristics	(1	of	2)
------------	---------------	-----------------	----	----	----

Item	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	100	-	-	ns	Figure 2.89
TCK clock high pulse width	t _{тскн}	45	-	-	ns	
TCK clock low pulse width	t _{TCKL}	45	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	

Renesas Synergy™ Platform S5D5 Microcontroller Group

