E. Kenesas Electronics America Inc - <u>R7FS5D57C3A01CFP#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, MMC/SD, QSPI, SCI, SPI, SSI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	109
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs5d57c3a01cfp-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Functional description
Realtime Clock (RTC)	The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 26, Realtime Clock (RTC) in User's Manual.

Table 1.7 Timers (2 of 2)

Table 1.8 Communication interfaces (1 of 2)

Feature	Functional description
Serial Communications Interface (SCI)	 The Serial Communications Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 32, Serial Communications Interface (SCI) in User's Manual.
IrDA Interface (IrDA)	The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 33, IrDA Interface in User's Manual.
I ² C Bus Interface (IIC)	The 3-channel IIC module conforms with and provides a subset of the NXP I ² C bus (Inter- Integrated Circuit bus) interface functions. See section 34, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent SPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices. See section 36, Serial Peripheral Interface (SPI) in User's Manual.
Serial Sound Interface Enhanced (SSIE)	The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I ² S (Inter-Integrated Sound) 2ch, 4ch, 6ch, 8ch, Word Select (WS) Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 39, Serial Sound Interface Enhanced (SSIE) in User's Manual.
Quad Serial Peripheral Interface (QSPI)	The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 37, Quad Serial Peripheral Interface (QSPI) in User's Manual.
Control Area Network (CAN) module	The Control Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically- noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 35, Controller Area Network (CAN) in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	The full-speed USB controller can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 31, USB 2.0 Full-Speed Module (USBFS) in User's Manual.

Function	Signal	I/O	Description						
ETHERC	REF50CK0	Input	50-MHz reference clock. This pin inputs reference signal for transmission/reception timing in RMII mode.						
	RMII0_CRS_DV	Input	Indicates carrier detection signals and valid receive data on RMII0_RXD1 and RMII0_RXD0 in RMII mode						
	RMII0_TXD0, RMII0_TXD1	Output	2-bit transmit data in RMII mode						
	RMII0_RXD0, RMII0_RXD1	Input	2-bit receive data in RMII mode						
	RMII0_TXD_EN	Output	Output pin for data transmit enable signal in RMII mode						
	RMII0_RX_ER	Input	Indicates an error occurred during reception of data in RMII mode						
	ET0_CRS	Input	Carrier detection/data reception enable signal						
	ET0_RX_DV	Input	Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0						
	ET0_EXOUT	Output	General-purpose external output pin						
	ET0_LINKSTA	Input	Input link status from the PHY-LSI						
	ET0_ETXD0 to ET0_ETXD3	Output	4 bits of MII transmit data						
	ET0_ERXD0 to ET0_ERXD3	Input	4 bits of MII receive data						
	ET0_TX_EN	Output	Transmit enable signal. Functions as signal indicating that transmit data is ready on ET0_ETXD3 to ET0_ETXD0						
	ET0_TX_ER	Output	Transmit error pin. Functions as signal notifying the PHY_LSI of an error during transmission						
	ET0_RX_ER	Input	Receive error pin. Functions as signal to recognize an error during reception						
	ET0_TX_CLK	Input	Transmit clock pin. This pin inputs reference signal for output timing from ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER						
	ET0_RX_CLK	Input	Receive clock pin. This pin inputs reference signal for input timing to ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER						
	ET0_COL	Input	Input collision detection signal						
	ET0_WOL	Output	Receive Magic packets						
	ET0_MDC	Output	Output reference clock signal for information transfer through ET0_MDIO						
	ET0_MDIO	I/O	Input or output bidirectional signal for exchange of management data with PHY-LSI						
SDHI	SD0CLK, SD1CLK	Output	SD clock output pins						
	SD0CMD, SD1CMD	I/O	Command output pin and response input signal pins						
	SD0DAT0 to SD0DAT7, SD1DAT0 to SD1DAT7	I/O	SD and MMC data bus pins						
	SD0CD, SD1CD	Input	SD card detection pins						
	SD0WP	Input	SD write-protect signals						
Analog power supply	AVCC0	Input	Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin.						
	AVSS0	Input	Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin.						
	VREFH0	Input	Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002.						
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to VSS when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002						
	VREFH	Input	Analog reference voltage supply pin for the ADC12 (unit 1) and D/A Converter. Connect this pin to VCC when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter.						
	VREFL	Input	Analog reference ground pin for the ADC12 and D/A Converter. Connect this pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter.						

Table 1.16Pin functions (4 of 5)

Pin	numl	ber				Ext	bus	Timers	;			Com	municat	ion inte	rfaces	;					Analog	9	НМІ	
	_		ystem, ebug,			snq							6,8	7,9		_		(IIIW)	(RMII)					
LGA145	LQFP144	LQFP100	Power, System, Clock, Debug, CAC	Interrupt	I/O port	External bus		AGT	GPT	GPT	RTC	USBFS, CAN	SCI0,2,4,6,8 (30 MHz)		2	SPI, QSPI	SSIE	ETHERC (MII) (25 MHz)	ETHERC (RMII) (50 MHz)	IHOS	ADC12	DAC12, ACMPHS	CTSU	PDC
E1	86	-	CLKOUT /CACRE F	-	P611	-	SDCS	-	-	-	-	-	-	CTS7_R TS7/SS7	-	-	-	-	-	-	-	-		-
F2	87	-	-	-	P612	D08[A08/ D08]	DQ08	-	-	-	-	-	-	SCK7	-	-	-	-	-	-	-	-	-	-
F1	88	-	-	-	P613	D08] D09[A09/	DQ09	-	-	-	-	-	-	TXD7	-	-	-	-	-	-	-	-	- ·	
G3	89	-	-	-	P614	D09] D10[DQ10	-	-	-	-	-	-	RXD7	-	-	-	-	-	-	-	-	-	
G1	90	62	VCC		_	A10/ D10]	-	_	-	_	_	-	_	_	_	_	_	-		_	_	_	_	
	91 92	63 64	VSS VCL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
H2	93	-	-	-	P605	D11[A11/	DQ11	-	-	GTIOC 8A	-	-	-	-	-	-	-	-	-	-	-	-	-	
G4	94	-	-	-	P604	D11] D12[A12/	DQ12	-	-	GTIOC 8B	-	-	-	-	-	-	-	-	-	-	-	-		-
H3	95	-	-	-	P603	D12] D13[A13/	DQ13	-	-	GTIOC 7A	-	-	-	CTS9_R TS9/SS9	-	-	-	-	-	-	-	-	-	
J1	96	65	-	-	P602	D13] EBC	SDCL	-	-	GTIOC	-	-	-	TXD9	-	-	-	-	-	-	-	-		
J2	97	66	-	-	P601	LK WR/ WR0	K DQM0	-	-	7B GTIOC 6A	-	-	-	RXD9	-	-	-	-	-	-	-	-	-	
H4	98	67	CLKOUT /CACRE	-	P600	RD	-	-	-	6A GTIOC 6B	-	-	-	SCK9	-	-	-	-	-	-	-	-	-	
K2	99	-	F VCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
K1 J3	100 101	- 68	VSS -	- KR07	- P107	- D07[A07/	- DQ07	- AGTOA0	-	- GTIOC 8A	-	-	- CTS8_R TS8/SS8	-	-	-	-	-	-	-	-	-	-	-
K3	102	69	-	KR06	P106	D07] D06[A06/	DQ06	AGTOB0	-	GTIOC 8B	-	-	SCK8	-	-	SSLA3 _A	-	-	-	-	-	-		-
J4	103	70	-		P105	D06] D05[DQ05	-	GTETRGA	GTIOC	-	-	TXD8/M	-	-	SSLA2	-	-	-	-	-	-		
L3	104	71	-	KR05	P104	A05/ D05] D04[DQ04	-	GTETRGB	1A GTIOC	-		OSI8/SD A8 RXD8/MI	-	-	_A SSLA1	-	-	-	-	-	-		
L1	105	72	-	KR04 KR03	P103	A04/ D04] D03[DQ03	_	GTOWUP	1B GTIOC		CTX0	SO8/SC L8 CTS0_R			_A SSLA0	-	_		_		_	_	
						A03/ D03]				2A_A			TS0/SS0			_A								
M1	106	73	-	KR02	P102	D02[A02/ D02]	DQ02	AGTO0	GTOWLO	GTIOC 2B_A	-	CRX0	SCK0	-	-	RSPC KA_A	-	-	-	-	ADTRG 0	-	-	-
M2	107	74	-	IRQ1/ KR01	P101	D01[A01/ D01]	DQ01	AGTEE0	GTETRGB	GTIOC 5A	-	-	TXD0/M OSI0/SD A0	CTS1_R TS1/SS1	SDA1 _B	MOSIA _A	-	-	-	-	-	-		-
N1	108	75	-	IRQ2/ KR00	P100	D00[A00/ D00]	DQ00	AGTIO0	GTETRGA	GTIOC 5B	-	-	RXD0/MI SO0/SC L0	SCK1	SCL1 _B	MISOA _A	-	-	-	-	-	-	-	-
L2	109	-	-	-	P800	D14[A14/	DQ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N2	110	-	-	-	P801	D14] D15[A15/	DQ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
N3	111	-	VCC	-	-	D15] -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
M3 K4	112 113	- 76	VSS -	-	- P500	-	-	- AGTOA0	- GTIU	- GTIOC	-	- USB_	-	-	-	- QSPC	-	-	-		- AN016	- IVREF0		-
M4	114	77		IRQ11	P501			AGTOB0	GTIV	11A GTIOC		VBUS EN USB_		TXD5/M		LK QSSL				K_A	AN116	IVREF1		
								AG1000		11B	_	OVRC URA		OSI5/SD A5			_	-		D_A				
L4	115	78	-	IRQ12	P502	-	-	-	GTIW	GTIOC 12A	-	USB_ OVRC URB	-	RXD5/MI SO5/SC L5	-	QIO0	-	-		SD1DA T0_A	AN017	IVCMP0	-	
K5	116	79	-	-	P503	-	-	-	GTETRGC	GTIOC 12B	-	USB_ EXICE N	CTS6_R TS6/SS6		-	QIO1	-	-	-	SD1DA T1_A	AN117	-	-	
L5		80	-		P504	ALE	-	-	GTETRGD	13A	Ŀ		SCK6	CTS5_R TS5/SS5	-	QIO2	-	-		SD1DA T2_A		-	-	
K6	118	-	-	IRQ14	P505	-	-	-	-	GTIOC 13B	-	-	RXD6/MI SO6/SC L6	-	-	QIO3	-	-	-	SD1DA T3_A	AN118	-	-	-
L6	119	-	-	IRQ15	P506	-	-	-	-	-	-	-	TXD6/M OSI6/SD A6	-	-	-	-	-	-	SD1CD	AN019	-	-	
N4	120	81	-	-	P508	-	-	-	-	-	-	-	A6 SCK6	SCK5	-	-	-	-	-	SD1DA T3_A	AN020	-	-	
N5			VCC	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
M5 M6		83 84	VSS -	- IRQ13	- P015	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- DA1/ IVCMP1	-	
N6	124	85	-	-	P014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AN005/	DA0/ IVREF3	-	
M7	125	86	VREFL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Item					Symbol	Min	Тур	Max	Unit
Schmitt trigger input voltage	Peripheral function	IIC (excep	ot for SMBus)* ²		V _{IH}	VCC × 0.7	-	VCC + 3.6 (max 5.8)	V
	pin				V _{IL}	-	-	VCC × 0.3	
					ΔV_T	VCC × 0.05	-	-	
		5 V-tolera	nt ports ^{*3, *7}		V _{IH}	VCC × 0.8	-	VCC + 3.6 (max 5.8)	
					V _{IL}	-	-	VCC × 0.2	
					ΔV_T	VCC × 0.05	-	-	
		RTCIC0,	When using the	When VBATT	V _{IH}	V _{BATT} × 0.8	-	V _{BATT} + 0.3	
		RTCIC1, RTCIC2	Battery Backup Function	power supply is selected	V _{IL}	-	-	V _{BATT} × 0.2	
		KTCIC2	1 unction	Selected	ΔV_T	V _{BATT} × 0.05	-	-	
				When VCC power supply is selected	V _{IH}	VCC × 0.8	-	Higher voltage either VCC + 0.3 V or V _{BATT} + 0.3 V	-
					V _{IL}	-	-	VCC × 0.2	-
					ΔV_T	VCC × 0.05	-	-	
				he Battery Backup	V _{IH}	VCC × 0.8	-	VCC + 0.3	
			Function		V _{IL}	-	-	VCC × 0.2	
					ΔV_T	VCC × 0.05	-	-	
		Other inp	ut pins*4		V _{IH}	VCC × 0.8	-	-	
					V _{IL}	-	-	VCC × 0.2	
					ΔV_T	VCC × 0.05	-	-	
	Ports	5 V-tolera	nt ports ^{*5, *7}		V _{IH}	VCC × 0.8	-	VCC + 3.6 (max 5.8)	V
					V _{IL}	-	-	VCC × 0.2	
		Other inp	ut pins* ⁶		V _{IH}	VCC × 0.8	-	-	1
					V _{IL}	-	-	VCC × 0.2	

Table 2.4 I/O V_{IH}, V_{IL} (2 of 2)

Note 1. SCL0_B (P204), SCL1_B, SDA1_B (total 3 pins).

Note 2. SCL0_A, SDA0_A, SCL0_B (P408), SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 8 pins).

Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 22 pins).

Note 4. All input pins except for the peripheral function pins already described in the table.

Note 5. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 21 pins).

Note 6. All input pins except for the ports already described in the table.

Note 7. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.

2.2.3 I/O I_{OH}, I_{OL}

Table 2.5	I/O I _{OH} , I _{OL}
-----------	---------------------------------------

Item			Symbol	Min	Тур	Мах	Unit
Permissible output current	Ports P000 to P009, P201	-	I _{ОН}	-	-	-2.0	mA
(average value per pin)			I _{OL}	-	-	2.0	mA
	Ports P014, P015	-	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
	Ports P205, P206, P407 to P415,	Low drive*1	I _{ОН}	-	-	-2.0	mA
	P602, P708 to P713 (total 18 pins)		I _{OL}	-	-	2.0	mA
		Middle drive*2	I _{ОН}	-	-	-2.0 2.0 -4.0 4.0 -2.0	mA
			I _{OL}	-	-	4.0	mA
		High drive* ³	I _{ОН}	-	-	-20	mA
			I _{OL}	-	-	20	mA
	Other output pins*4	Low drive*1	I _{ОН}		-2.0	mA	
			I _{OL}	-	-	2.0	mA
		Middle drive*2	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		High drive* ³	I _{ОН}	-	-	-16	mA
			I _{OL}	-	-	$\begin{array}{c c} -4.0 \\ 4.0 \\ -2.0 \\ 2.0 \\ 4.0 \\ -2.0 \\ 2.0 \\ -4.0 \\ 2.0 \\ -2.0 \\ 2.0 \\ -2.0 \\ 2.0 \\ -2.0 \\ 2.0 \\ -4.0 \\ 4.0 \\ -8.0 \\ 4.0 \\ -8.0 \\ 8.0 \\ -4.0 \\ 4.0 \\ -8.0 \\ 8.0 \\ -4.0 \\ 4.0 \\ -8.0 \\ 8.0 \\ -4.0 \\ 4.0 \\ -8.0 \\ 8.0 \\ -4.0 \\ 4.0 \\ -8.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -4.0 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32 \\ 8.0 \\ -32$	mA
Permissible output current	Ports P000 to P009, P201	-	I _{ОН}	-	-	-4.0	mA
max value per pin)		$\begin{tabular}{ c c c c c } \hline Middle drive^{*2} & I_{OH} & - & - & - & - & - & - & - & - & - & $	4.0	mA			
	Ports P014, P015	-	I _{OH}	- - -4.0 - - 4.0 - - 4.0 - - 2.0 - - 2.0 - - 2.0 - - 4.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	-8.0	mA	
			I _{OL}	-	-	-2.0 2.0 -4.0 4.0 -2.0 2.0 4.0 -2.0 2.0 -4.0 4.0 -20 20 -2.0 2.0 -2.0 2.0 -4.0 4.0 -16 16 -4.0 4.0 -8.0 8.0 -4.0 4.0 -8.0 8.0 -4.0 4.0 -8.0 8.0 -4.0 4.0 -8.0 8.0 -4.0 4.0 -8.0 8.0 -3.0 8.0 -3.1 32 -80	mA
	Ports P205, P206, P407 to P415,	Low drive*1	I _{ОН}	-	-		mA
	P602, P708 to P713 (total 18 pins)		I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{ОН}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
		High drive*3	I _{OH}	-	-	-40	mA
			I _{OL}	-	-	40	mA
	Other output pins*4	Low drive*1	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{ОН}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
		High drive* ³	I _{ОН}	-	-	-32	mA
			I _{OL}	-	-	32	mA
Permissible output current	Maximum of all output pins	•	ΣI _{OH (max)}	-	-	-80	mA
maxvalue of total of all pins)			ΣI _{OL (max)}	-	-	80	mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Note 4. Except for P200, which is an input port.

Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

2.2.5 Operating and Standby Current

Table 2.7Operating and standby current (1 of 2)

ltem					Symbol	Min	Тур	Max	Unit	Test conditions
Supply current*1		Maximum* ²			I _{CC} *3	-	-	102* ²	mA	ICLK = 120 MHz PCLKA = 120 MHz*
current		CoreMark ^{®*5}				-	19	-		PCLKB = 60 MHz
		Normal mode	All pe while flash*	ripheral clocks enabled, (1) code executing from 4		-	26	-		PCLKC = 60 MHz PCLKD = 120 MHz FCLK = 60 MHz BCLK = 120 MHz
	High-speed mode		All pe while flash*	ripheral clocks disabled, (1) code executing from 5, *6		-	12	-		
	eed	Sleep mode*5, *6			1	-	10	40		
	h-sp	Increase during BGO	Data	flash P/E	1	-	6	-		
	Hig	operation	Code	flash P/E	1	-	8	-		
	Lo	w-speed mode*5	1	-	1.3	-		ICLK = 1 MHz		
	Su	bosc-speed mode*5			1	-	1.2	-		ICLK = 32.768 kHz
	So	ftware Standby mode			1	-	1.3	15		Ta ≤ 85°C
						-	1.3	24		Ta ≤ 105°C
		Power supplied to Standb	y SRAN	I and USB resume	1	-	29	67	μA	Ta ≤ 85°C
		detecting unit				-	29	96		Ta ≤ 105°C
		Power not supplied to		r-on reset circuit low		-	11.6	32.4		Ta ≤ 85°C
	e	SRAM or USB resume detecting unit	powe	r function disabled		-	11.6	40	0	Ta ≤ 105°C
	Standby mode	actoring and	Powe	r-on reset circuit low		-	4.9	23.5	-	Ta ≤ 85°C
	dby		powe	r function enabled		-	4.9	31		Ta ≤ 105°C
		Increase when the RTC and AGT are operating		the low-speed on-chip ator (LOCO) is in use		-	4.4	-		-
Software			a crystal oscillator for ock loads is in use		-	1.0	-		-	
	Deep			a crystal oscillator for ard clock loads is in use		-	1.4	-		-
	the	C operating while VCC is of battery backup function, or C and sub-clock oscillator		-	0.9	-		V _{BATT} = 1.8 V, VCC = 0 V		
		erate)		-	1.1	-		V _{BATT} = 3.3 V, VCC = 0 V		
				When a crystal oscillator for standard clock loads is in use		-	1.0	-		V _{BATT} = 1.8 V, VCC = 0 V
	_					-	1.6	-		V _{BATT} = 3.3 V, VCC = 0 V
Analog bower		ring 12-bit A/D conversion			AI _{CC}	-	0.8	1.1	mA	-
supply current		ring 12-bit A/D conversion	with S/H	lamp	_	-	2.3	3.3	mA	-
Junent		CMPHS (1 unit)			_	-	100	150	μA	-
		mperature sensor			_	-	0.1	0.2	mA	-
	Du	ring D/A conversion (per un	lit)	Without AMP output	_	-	0.1	0.2	mA	-
				With AMP output	_	-	0.6	1.1	mA	-
		aiting for A/D, D/A conversion		,	_	-	0.9	1.6	mA	-
		0C12, DAC12 in standby mo		units)*°		-	2	8	μA	-
Reference bower		ring 12-bit A/D conversion (,		AI _{REFH0}	-	70	120	μA	-
supply current		aiting for 12-bit A/D convers	•	(U)	4	-	0.07	0.5	μA	-
VREFH0)	AD	0C12 in standby modes (uni	t 0)			-	0.07	0.5	μA	-
Reference	Du	ring 12-bit A/D conversion (unit 1)		AI _{REFH}	-	70	120	μA	-
oower Supply		ring D/A conversion		Without AMP output	1	-	0.1	0.4	mA	-
current	(pe	er unit)		With AMP ouput	1	-	0.1	0.4	mA	-
(VREFH)	Wa	aiting for 12-bit A/D (unit 1),	D/A (all	units) conversion	-	-	0.07	0.8	μA	-
		OC12 unit 1 in standby mode			1	-	0.07	0.8	μA	-

ltem		Symbol	Min	Тур	Max	Unit	Test conditions
HOCO clock oscillator	Without FLL*2	f _{HOCO16}	15.78	16	16.22	MHz	–20 ≤ Ta ≤ 105°C
oscillation frequency		f _{HOCO18}	17.75	18	18.25		
		f _{HOCO20}	19.72	20	20.28		
		f _{HOCO16}	15.71	16	16.29		–40 ≤ Ta ≤ –20°C
		f _{HOCO18}	17.68	18	18.32		
		f _{HOCO20}	19.64	20	20.36		
	With FLL	f _{HOCO16}	15.955	16	16.045		-40 ≤ Ta ≤ 105°C
		f _{HOCO18}	17.949	18	18.051		Sub-clock frequency accuracy
		f _{HOCO20}	19.944	20	20.056		is ±50 ppm.
HOCO clock oscillation sta	bilization wait time	t _{носоwт}	-	-	64.7	μs	-
FLL stabilization wait time	t _{FLLWT}	-	-	1.8	ms	-	
PLL clock frequency	f _{PLL}	120	-	240	MHz	-	
PLL clock oscillation stabili	zation wait time	t _{PLLWT}	-	-	174.9	μs	Figure 2.11

Table 2.13 Clock timing except for sub-clock oscillator (2 of 2)

Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value.

After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator.

Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed operation.

Table 2.14 Clock timing for the sub-clock oscillator

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock frequency	f _{SUB}	-	32.768	-	kHz	-
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	-	-	_*Note:	S	-

Note: When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time.

After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended.

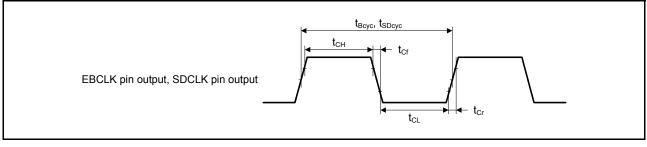


Figure 2.7 EBCLK and SDCLK output timing

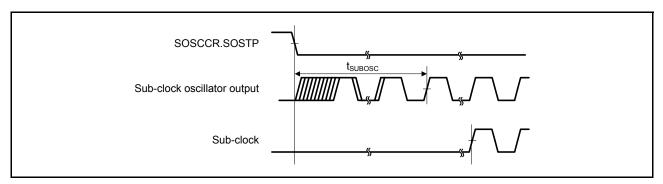


Figure 2.12 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.15Reset timing

ltem		Symbol	Min	Тур	Max	Unit	Test conditions
RES pulse width Power-on		t _{RESWP}	1	-	-	ms	Figure 2.13
	Deep Software Standby mode	t _{RESWD}	0.6	-	-	ms	Figure 2.14
	Software Standby mode, Subosc-speed mode	t _{RESWS}	0.3	-	-	ms	
	All other	t _{RESW}	200	-	-	μs	
Wait time after RE	S cancellation	t _{RESWT}	-	29	32	μs	Figure 2.13
Wait time after inte (IWDT reset, WDT reset, SRAM ECC slave MPU error re	t _{RESW2}	-	320	390	μs	-	

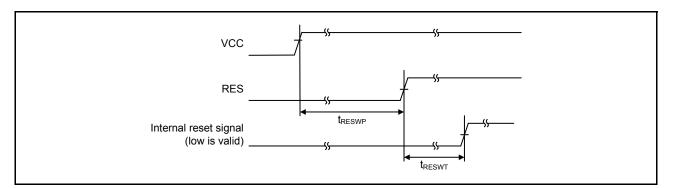
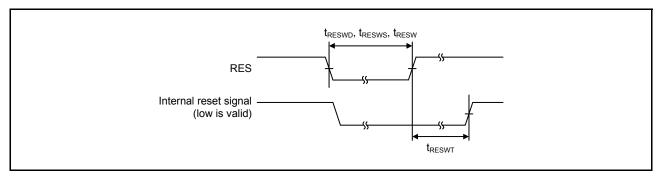



Figure 2.13 Power-on reset timing

Figure 2.14 Reset input timing

2.3.4 Wakeup Timing

Table 2.16	Timing of recovery from low power modes
------------	---

Item			Symbol	Min	Тур	Мах	Unit	Test conditions
Recovery time from Software	Crystal System clock source is main resonator clock oscillator*2		t _{SBYMC}	-	2.4* ⁹	2.8* ⁹	ms	Figure 2.15 The division
t	connected to main clock oscillator	System clock source is PLL with main clock oscillator* ³	t _{SBYPC}	-	2.7 ^{*9}	3.2* ⁹	ms	 ratio of all oscillators is 1.
	External clock input	System clock source is main clock oscillator*4	t _{SBYEX}	-	230* ⁹	280* ⁹	μs	
	to main clock oscillator	System clock source is PLL with main clock oscillator*5	t _{SBYPE}	-	570* ⁹	700* ⁹	μs	
	System clock oscillator*8	source is sub-clock	t _{SBYSC}	-	1.2* ⁹	1.3* ⁹	ms	
	System clock	t _{SBYLO}	-	1.2* ⁹	1.4* ⁹	ms		
	System clock oscillator*6	source is HOCO clock	t _{SBYHO}	-	240* ^{9, *10}	300 *9, *10	μs	
	System clock source is MOCO clock oscillator* ⁷		t _{SBYMO}	-	220* ⁹	300* ⁹	μs	
Recovery time from	Recovery time from Deep Software Standby mode		t _{DSBY}	-	0.65	1.0	ms	Figure 2.16
Wait time after cancellation of Deep Software Standby mode		t _{DSBYWT}	34	-	35	t _{cyc}		
Recovery time from Software	High-speed mode when system clock source is HOCO (20 MHz)		t _{SNZ}	-	35* ^{9, *10}	70 *9, *10	μs	Figure 2.17
Standby mode to Snooze mode	High-speed mode when system clock source is MOCO (8 MHz)		t _{SNZ}	-	11* ⁹	14* ⁹	μs	

Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation:

Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3 SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).

- Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 05h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 05h))
- Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 05h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 05h))
- Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + ($t_{MAINOSCWT}$ (MOSCWTCR = Xh) - $t_{MAINOSCWT}$ (MOSCWTCR = 00h))
- Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: t_{SBYMC} (MOSCWTCR = Xh) = t_{SBYMC} (MOSCWTCR = 00h) + (t_{MAINOSCWT} (MOSCWTCR = Xh) - t_{MAINOSCWT} (MOSCWTCR = 00h))
- Note 6. The HOCO frequency is 20 MHz.
- Note 7. The MOCO frequency is 8 MHz.
- Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.

Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: STCONR.STCON[1:0] = 00b:16 μs (typical), 34 μs (maximum) STCOND STCON[1:0] = 44b:46 μs (typical), 104 μs (maximum)

STCONR.STCON[1:0] = 11b:16 μ s (typical), 104 μ s (maximum).

Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 µs (typical) or 18 µs (maximum) is added as the HOCO wait time.

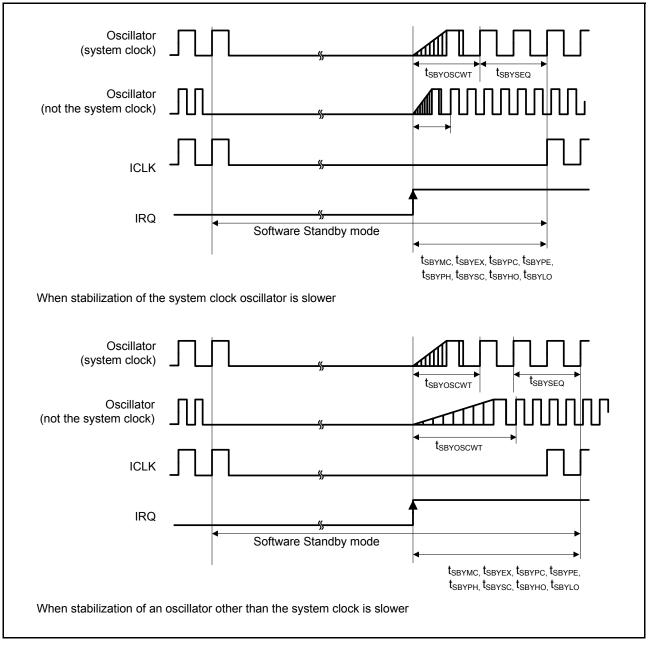


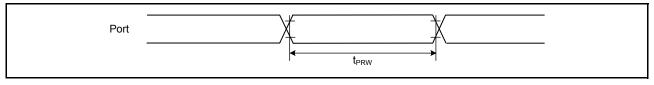
Figure 2.15 Software Standby mode cancellation timing

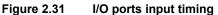
Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2) GPT32 Conditions:

High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

AGT Conditions:

Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.


ltem			Symbol	Min	Max	Unit	Test conditions
GPT32	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.33
		Dual edge		2.5	-		
	GTIOCxY output skew	Middle drive buffer	t _{GTISK} *2	-	4	ns	Figure 2.34
	(x = 0 to 7, Y= A or B)	High drive buffer		-	4		
GTIOCxY output skew		Middle drive buffer	-	-	4		
	(x = 8 to 13, Y = A or B)	High drive buffer		-	4		
	GTIOCxY output skew			-	6		
	(x = 0 to 13, Y = A or B)	High drive buffer		-	6		
	OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO		t _{GTOSK}	-	5	ns	Figure 2.35
GPT(PWM Delay Generation Circuit)	GTIOCxY_Z output skew (x = 0 to 3, Y = A or B, Z = A)		t _{HRSK} *3	-	2.0	ns	Figure 2.36
AGT	AGTIO, AGTEE input cycle		t _{ACYC} *4	100	-	ns	Figure 2.37
	AGTIO, AGTEE input high width	, low width	t _{ACKWH} , t _{ACKWL}	40	-	ns	
	AGTIO, AGTO, AGTOA, AGTO	3 output cycle	t _{ACYC2}	62.5	-	ns	
ADC12	ADC12 trigger input pulse width		t _{TRGW}	1.5	-	t _{Pcyc}	Figure 2.38
KINT	Key interrupt input low width		t _{KR}	250	-	ns	Figure 2.39


Note 1. t_{Pcyc}: PCLKB cycle, t_{PDcyc}: PCLKD cycle.

Note 2. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.

Note 3. The load is 30 pF.

Note 4. Constraints on AGTIO input: $t_{Pcyc} \times 2$ (t_{Pcyc} : PCLKB cycle) < t_{ACYC} .

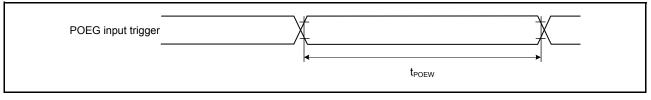
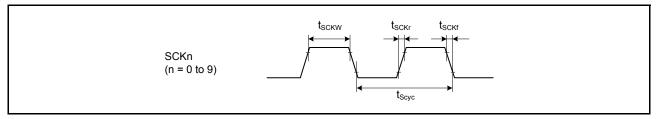


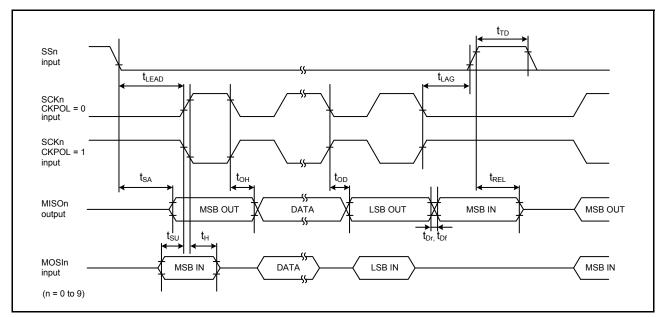
Figure 2.32 POEG input trigger timing

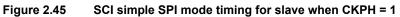
Note 1. t_{PBcyc}: PCLKB cycle.


Note 2. t_{cac} : CAC count clock source cycle.

2.3.10 SCI Timing

Table 2.22SCI timing (1)Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. . .


ltem			Symbol	Min	Мах	Unit ^{*1}	Test conditions
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.40
		Clock synchronous		6	-		
	Input clock pulse width	•	t _{SCKW}	0.4	0.6	t _{Scyc}	_
	Input clock rise time		t _{SCKr}	-	5	ns	
	Input clock fall time		t _{SCKf}	-	5	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	6	-	t _{Pcyc}	
		Clock synchronous		4	-		
	Output clock pulse width	•	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time		t _{SCKr}	-	5	ns	
	Output clock fall time		t _{SCKf}	-	5	ns	
	Transmit data delay	Clock synchronous	t _{TXD}	-	25	ns	Figure 2.41
	Receive data setup time	Clock synchronous	t _{RXS}	15	-	ns	
	Receive data hold time	Clock synchronous	t _{RXH}	5	-	ns	


Note 1. t_{Pcyc} : PCLKA cycle.

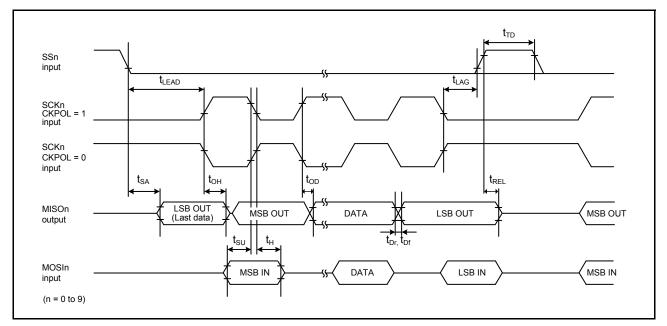


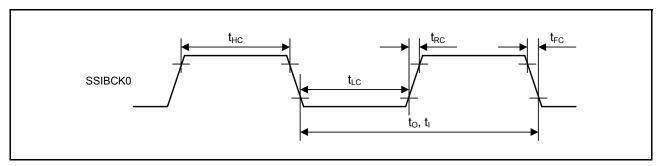
Figure 2.40 SCK clock input/output timing

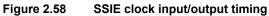
SCI simple SPI mode timing for slave when CKPH = 0 Figure 2.46

 Table 2.24
 SCI timing (3) (1 of 2)

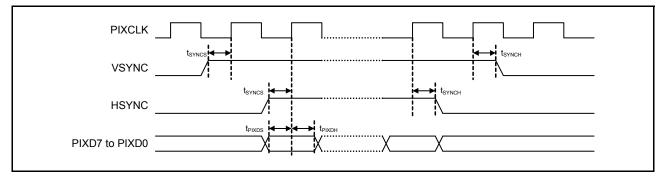
 Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

ltem		Symbol	Min	Max	Unit	Test conditions
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.47
(Standard mode)	SDA input fall time	t _{Sf}	-	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	250	-	ns	
	Data input hold time	t _{SDAH}	0	-	ns	
	SCL, SDA capacitive load	C _{b*} 1	-	400	pF	1


2.3.14 SSIE Timing


Table 2.29SSIE timing(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.

(2) Use pins that have a letter appended to their names, for instance "_A" or "_B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.


				Target s	pecification		
Item			Symbol	Min.	Max.	Unit	Comments
SSIBCK0	Cycle	Master	t _O	80	-	ns	Figure 2.58
		Slave	t _l	80	-	ns	-
	High level/ low level	Master	t _{HC} /t _{LC}	0.35	-	to	-
		Slave		0.35	-	t _l	-
	Rising time/falling time	Master	t _{RC} /t _{FC}	-	0.15	t _O / t _I	-
		Slave		-	0.15	t _O / t _I	-
SSILRCK0/SSIFS0,	Input set up time	Master	t _{SR}	12	-	ns	Figure 2.60,
SSITXD0, SSIRXD0, SSIDATA0		Slave		12	-	ns	Figure 2.61
	Input hold time	Master	t _{HR}	8	-	ns	-
		Slave		15	-	ns	-
	Output delay time	Master	t _{DTR}	-10	5	ns	-
		Slave		0	20	ns	Figure 2.60, Figure 2.61
	Output delay time from SSILRCK0/SSIFS0 change	Slave	t _{DTRW}	-	20	ns	Figure 2.62*1
GTIOC1A,	Cycle		t _{EXcyc}	20	-	ns	Figure 2.59
AUDIO_CLK	High level/ low level		t _{EXL} / t _{EXH}	0.4	0.6	t _{EXcyc}]

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA0 pin.

Figure 2.76 PDC AC timing

- 2.4 USB Characteristics
- 2.4.1 USBFS Timing

Table 2.33USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz

ltem		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	-	-	V	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = –200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.77
	Rise time	t _{LR}	75	-	300	ns	
	Fall time	t _{LF}	75	-	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	-	125	%	t _{LR} / t _{LF}
Pull-up and pull- down characteristics	USB_DP and USB_DM pull- down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-

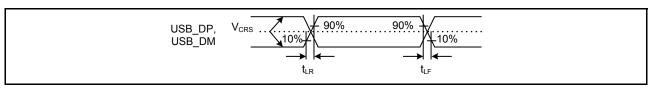


Figure 2.77 USB_DP and USB_DM output timing in low-speed mode

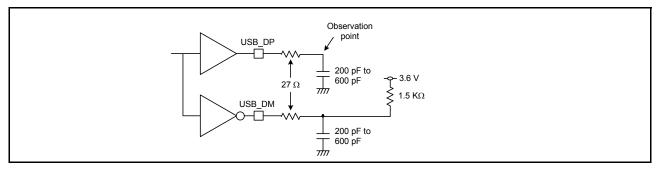


Figure 2.78 Test circuit in low-speed mode

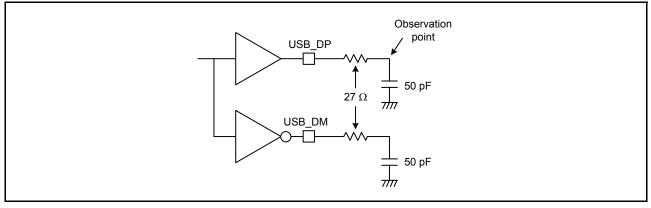

ltem		Symbol	Min	Тур	Мах	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	-	-	V	-
characteristics	Input low voltage	V _{IL}	-	-	0.8	V	-
	Differential input sensitivity	V _{DI}	0.2	-	-	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	-	2.5	V	-
Output	Output high voltage	V _{OH}	2.8	-	3.6	V	I _{OH} = –200 μA
characteristics	Output low voltage	V _{OL}	0.0	-	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	-	2.0	V	Figure 2.79
	Rise time	t _{LR}	4	-	20	ns	
	Fall time	t _{LF}	4	-	20	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	90	-	111.11	%	t _{FR} / t _{FF}
	Output resistance	Z _{DRV}	28	-	44	Ω	USBFS: Rs = 27 Ω included
Pull-up and pull-	DM pull-up resistance in	R _{pu}	0.900	-	1.575	kΩ	During idle state
down characteristics	device controller mode		1.425	-	3.090	kΩ	During transmission and reception
	USB_DP and USB_DM pull- down resistance in host controller mode	R _{pd}	14.25	-	24.80	kΩ	-

 Table 2.34
 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)

 Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz

Figure 2.79 USB_DP and USB_DM output timing in full-speed mode

Test circuit in full-speed mode Figure 2.80

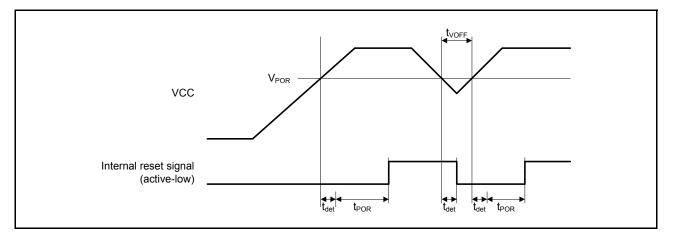
ADC12 Characteristics 2.5

[Normal-precision channel]

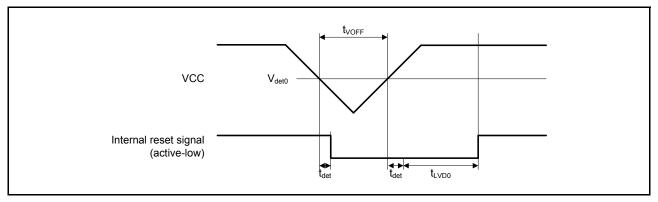
 A/D conversion characteristics for unit 0 (1 of 2)

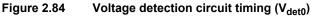
 Conditions: PCLKC = 1 to 60 MHz

Item	Min	Тур	Max	Unit	Test conditions
Frequency	1	-	60	MHz	-
Analog input capacitance	-	-	30	pF	-



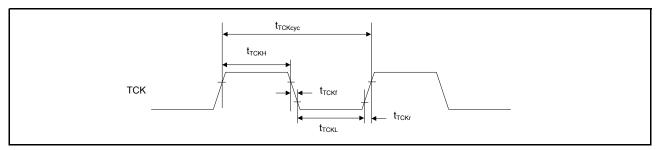
Item	Symbol	Min	Тур	Мах	Unit	Test conditions
Minimum VCC down time*1	t _{VOFF}	200	-	-	μs	Figure 2.83, Figure 2.84
Response delay	t _{det}	-	-	200	μs	Figure 2.83 to Figure 2.86
LVD operation stabilization time (after LVD is enabled)	t _{d(E-A)}	-	-	10	μs	Figure 2.85,
Hysteresis width (LVD1 and LVD2)	V _{LVH}	-	70	-	mV	Figure 2.86


The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, Note 1. V_{det1}, and V_{det2} for POR and LVD.


The low power function is disabled and DEEPCUT[1:0] = 00b or 01b. The low power function is enabled and DEEPCUT[1:0] = 11b. Note 2.

Note 3.

Figure 2.83 Power-on reset timing



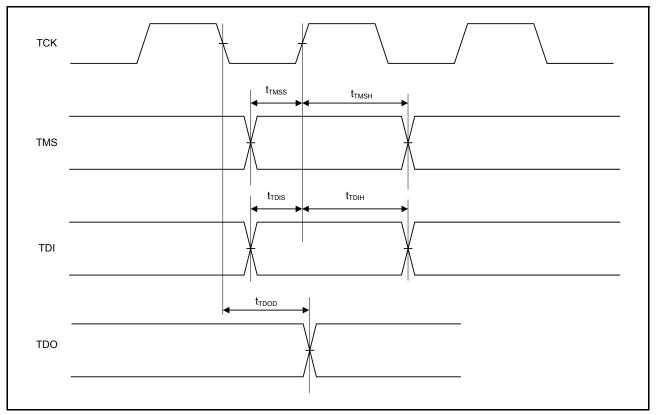
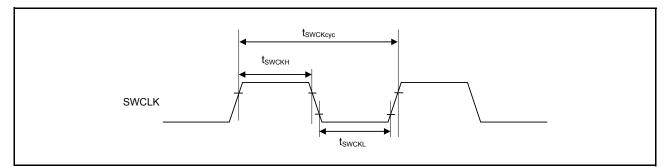

2.15 Joint European Test Action Group (JTAG)

Table 2.49 JTAG

Item	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	40	-	-	ns	Figure 2.89
TCK clock high pulse width	t _{тскн}	15	-	-	ns	
TCK clock low pulse width	t _{TCKL}	15	-	-	ns	
TCK clock rise time	t _{TCKr}	-	-	5	ns	
TCK clock fall time	t _{TCKf}	-	-	5	ns	
TMS setup time	t _{TMSS}	8	-	-	ns	Figure 2.90
TMS hold time	t _{TMSH}	8	-	-	ns	
TDI setup time	t _{TDIS}	8	-	-	ns	
TDI hold time	t _{TDIH}	8	-	-	ns	
TDO data delay time	t _{TDOD}	-	-	20	ns	



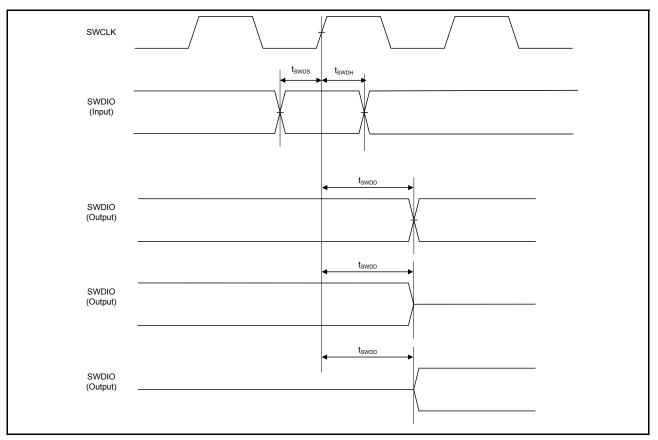

2.16 Serial Wire Debug (SWD)

Table 2.50 SWD

Item	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	40	-	-	ns	Figure 2.94
SWCLK clock high pulse width	t _{swcкн}	15	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	15	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	8	-	-	ns	Figure 2.95
SWDIO hold time	t _{SWDH}	8	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	28	ns	

Figure 2.94 SWD SWCLK timing

- Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpliing, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

(Rev.3.0-1 November 2016)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Bouleyard Santa Clara, CA 95050-2549, U.S.A. Tel: +1408-588-4000, Fax: +14-08-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 913 Tel: +1905-237-2004 Renesas Electronics Curope Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1828-585-100, Fax: +44-182-585-900 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +49-211-5603-0, Fax: +49-211-5603-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (China) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +862-12-226-0888, Fax: +86-2-12226-0999 Renesas Electronics Thong Kong Limited Unit 101-1611, 16FT, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-265-6686, Fax: +852-286-9022 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +856-24175-9600, Fax: +868-2.9175-9670 Renesas Electronics Malayia Sdn.Bhd. Wini 1207, Ibok B, Menara Amcorp, Ancorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +650-3-7955-9300, Fax: +80-3-7955-9510 Renesas Electronics India PH. Ltd. No.7777, 100 Feet Road, HAL II Singe, Indiranagar, Bangalore, India Tel: +80-3-7955-9300, Fax: +80-47208777 Renesas Electronics India PH. Ltd. No.7777, 100 Feet Road, HAL II Singe, Indiranagar, Bangalore, India Tel: +80-67208770, Fax: +80-47208777