
E·XFL

NXP USA Inc. - DSPB56720AG Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Not For New Designs
Туре	Audio Processor
Interface	Host Interface, I ² C, SAI, SPI
Clock Rate	200MHz
Non-Volatile Memory	External
On-Chip RAM	744kB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dspb56720ag

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Electrical Characteristics

2.1 Maximum Ratings

Table 2 shows the maximum ratings.

This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled to an appropriate logic voltage level (for example, either GND or V_{DD}). The suggested value for a pull-up or pull-down resistor is 4.7 k Ω .

NOTE

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Rating ¹	Symbol	Value ^{1, 2}	Unit
Supply Voltage	V _{CORE_VDD} , V _{PLLD_VDD}	-0.3 to + 1.26	V
	V _{PLLP_VDD,} V _{IO_VDD,} V _{PLLA_VDD} ,	-0.3 to + 4.0	V
Maximum CORE_VDD power supply ramp time ³	Tr	10	ms
Input Voltage per pin excluding VDD and GND	V _{IN}	GND -0.3 to 5.5 V	V
Current drain per pin excluding V _{DD} and GND (Except for pads listed below)	I	12	mA
LSYNC_OUT	I _{lsync_out}	16	mA
LCLK	I _{Iclk}	16	mA
LALE	I _{ale}	16	mA
TDO	I _{JTAG}	24	mA
Operating temperature range	TJ	-40 to +100	°C

Table 2. Maximum Ratings

2.4 **Power Consumption Considerations**

Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by the following formula:

$$\mathbf{I} = \mathbf{C} \times \mathbf{V} \times \mathbf{f}$$

Eqn. 1

where

V=voltage swing f=frequency of node/pin toggle

C=node/pin capacitance

Example 1. Power Consumption Example

For a GPIO address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 150 MHz clock, toggling at its maximum possible rate (75 MHz), the current consumption is

$$I = 50 \times 10^{-12} \times 3.3 \times 75 \times 10^{6} = 12.375 \text{ mA}$$
 Eqn. 2

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

For applications that require very low current consumption, do the following:

- Minimize the number of pins that are switching.
- Minimize the capacitive load on the pins.

One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (for example, to compensate for measured board current not caused by the DSP). Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value.

$$I/MIPS = I/MHz = (I_{tvpF2} - I_{tvpF1})/(F2 - F1)$$
 Eqn. 3

where :

I_{typF2}=current at F2 I_{typF1}=current at F1 F2=high frequency (any specified operating frequency) F1=low frequency (any specified operating frequency lower than F2)

NOTE

F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

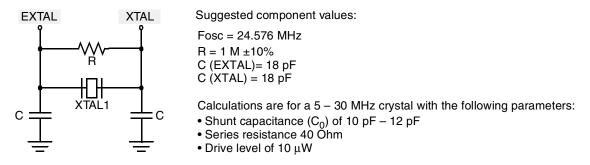

2.5 DC Electrical Characteristics

Table 4 shows the DC electrical characteristics.

|--|

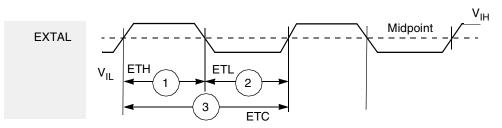

	Characteristics	Symbol	Min	Тур	Max	Unit
Commercial	Supply voltages: • Core (Core_VDD) • PLL (PLLD_VDD, PLLD1_VDD)	V _{DD}	0.9	1	1.1	V
	Supply voltages: • I/O (IO_VDD) • PLL (PLLP_VDD, PLLP1_VDD) • PLL (PLLA_VDD, PLLA1_VDD)	V _{DDIO}	3.14	3.3	3.46	V
Automotive	Supply voltages: • Core (Core_VDD) • PLL (PLLD_VDD, PLLD1_VDD)	V _{DD}	0.95	1	1.05	V
	Supply voltages: • I/O (IO_VDD) • PLL (PLLP_VDD, PLLP1_VDD) • PLL (PLLA_VDD, PLLA1_VDD)	V _{DDIO}	3.14	3.3	3.46	V
Note: To avo	bid a high current condition and possible system damage, all 3.	3 V supplies m	ust rise be	fore the 1	.0 V supp	lies rise.
Input low vo	tage	V _{IL}	-0.3	_	0.8	V
Input leakag	e current	I _{IN}	—	—	± 84	μA
Clock pin In	out Capacitance (EXTAL)	C _{IN}	—	18	—	pF
High impeda	ance (off-state) input current (@ 3.3 V or 0 V)	I _{TSI}	-10	—	10	μA
Output high I _{OH} = -12 n LSYNC_O		V _{OH}	2.4	_	-	V
Output low v I _{OL} = 12 m/ LSYNC_O	•	V _{OL}	_	_	0.4	V
Internal pull-	up resistor	R _{PU}	64	92	142	kΩ
Internal pull-	down resistor	R _{PD}	57	90	157	kΩ
Commercial	Internal supply current ¹ (core only) at internal clock of 200 MHz					
	In Normal mode	I _{CCI}	—	224	445	mA
	In Wait mode	Iccw	-	121	353	mA
	 In Stop mode² 	I _{CCS}	—	90	327	mA

Figure 9. Using the On-Chip Oscillator

If the DSP56720/DSP56721 system clock is an externally supplied square wave voltage source, it is connected to EXTAL (Figure 10). When the external square wave source is connected to EXTAL, the XTAL pin is not used.

Note: The midpoint is 0.5 $(V_{IH} + V_{IL})$.

Figure 10. External Clock Timing

Table 6 lists the clock operation.

No.	Characteristics	Symbol	Min	Мах	Units
1	EXTAL input high ¹ (40% to 60% duty cycle) • Crystal oscillator • Square wave input	Eth	16.67 2.5	100 inf	ns
2	EXTAL input low ¹ (40% to 60% duty cycle) • Crystal oscillator • Square wave input	Etl	16.67 2.5	100 inf	ns
3	EXTAL cycle time With PLL disabled With PLL enabled 	Etc	5 33.3	inf 500	ns
4	Instruction cycle time With PLL disabled With PLL enabled 	Тс	5.00 5.00	inf 5120	ns

Table 6. Clock Operation

Notes:

1. Measured at 50% of the input transition.

2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

2.9 Reset, Stop, Mode Select, and Interrupt Timing

Table 7 shows the reset, stop, mode select, and interrupt timing.

No.	Characteristics	Expression	Min	Max	Unit
10	Delay from RESET assertion to all pins at reset value ³	_	_	11	ns
11	 Required RESET duration⁴ Power on, external clock generator, PLL disabled Power on, external clock generator, PLL enabled 	$2 \times T_{C}$ $2 \times T_{C}$	10 10		ns ns
13	Syn reset deassert delay time • Minimum	$2 \times T_{C}$	10		ns
	Maximum (PLL enabled)	$(2 \text{ x T}_{\text{C}}) + \text{T}_{\text{LOCK}}$	200	—	us
14	Mode select setup time	—	10.0	_	ns
15	Mode select hold time	—	12	_	ns
16	Minimum edge-triggered interrupt request assertion width	—	7	_	ns
17	Minimum edge-triggered interrupt request deassertion width	—	4	_	ns
18	Delay from interrupt trigger to interrupt code execution	$10 \times T_{C+4}$	54		ns
19	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{1, 2, 3} • PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0)	(128 Kbytes × T _{C)}	655		μs
	• PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 = 1)	25 × T _C	125	—	ns
	 PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 = 0) 	(128 Kbytes \times T _C) + T _{LOCK}	855	—	μs
	 PLL is not active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) 	$(25 \times T_{C}) + T_{LOCK}$	200	—	μs
20	 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution¹ 	10 × T _C + 3.8	_	53.8	ns
21	Interrupt Requests Rate ¹ ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1 	$12 \times T_{C}$	_	60.0	ns
	• DMA	$8 \times T_{C}$	—	40.0	ns
	• IRQ, NMI (edge trigger)	$8 \times T_{C}$	—	40.0	ns
	• IRQ (level trigger)	$12 \times T_{C}$	—	60.0	ns

No.	Characteristics	Expression	Min	Max	Unit
22	DMA Requests Rate Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1 	$6 \times T_{C}$		30.0	ns
	Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1	$7 \times T_{C}$	—	35.0	ns
	Timer, Timer_1	$2 \times T_{C}$	—	10.0	ns
	• IRQ, NMI (edge trigger)	$3 \times T_{C}$	—	15.0	ns

Table 7. Reset, Stop, Mode Select, and Interrupt Timing Parameters

Notes:

1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode.

2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined by the OMR Bit 6 settings.

For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 μ s.

- 3. Periodically sampled and not 100% tested.
- 4. RESET duration is measured during the time in which RESET is asserted, V_{DD} is valid, and the EXTAL input is active and valid. When V_{DD} is valid, but the other "required RESET duration" conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration.

Figure 11 shows the reset timing diagram.

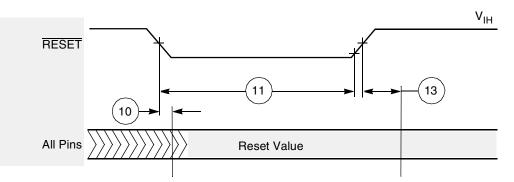


Figure 11. Reset Timing Diagram

No.	Characteristics ^{1,3,4}	Mode	Filter Mode	Expression	Min	Max	Unit
33	SCK edge to data out valid	Master	Bypassed	$3.0 \times T_{C} + 30$		45	ns
	(data out delay time)	/Slave	Very Narrow	$3.0 imes T_{C} + 95$	—	110	ns
			Narrow	3.0 × T _C + 120	—	135	ns
			Wide	$3.0 \times T_{C} + 210$	—	225	ns
34	SCK edge to data out not valid	Master	Bypassed	$2.0 \times T_{C}$	10	_	ns
	(data out hold time)	/Slave	Very Narrow	$2.0 imes T_{C} + 5$	15	_	ns
			Narrow	$2.0 imes T_{C} + 45$	55	_	ns
			Wide	$2.0 imes T_{C} + 95$	105		ns
35	SS assertion to data out valid (CPHA = 0)	Slave	—	—	_	14.0	ns
36	First SCK sampling edge to HREQ output	Slave	Bypassed	$3.0 imes T_{C} + 30$	45	_	ns
	deassertion		Very Narrow	$3.0 imes T_{C} + 40$	55	_	ns
			Narrow	$3.0 imes T_{C} + 80$	95	_	ns
			Wide	3.0 × T _C + 130	145	_	ns
37	Last SCK sampling edge to HREQ output	Slave	Bypassed	$4.0 imes T_{C} + 30$	50.0		ns
37	not deasserted (CPHA = 1)		Very Narrow	$4.0 imes T_{C} + 40$	60.0	_	ns
			Narrow	$4.0 imes T_{C} + 80$	100.0	_	ns
			Wide	$4.0 \times T_{C} + 130$	150.0	_	ns
38	\overline{SS} deassertion to \overline{HREQ} output not deasserted (CPHA = 0)	Slave	—	$3.0 \times T_{C} + 30$	45.0	_	ns
39	\overline{SS} deassertion pulse width (CPHA = 0)	Slave	_	$2.0 \times T_{C}$	10.0	_	ns
40	HREQ in assertion to first SCK edge	Master	Bypassed	$\begin{array}{c} 0.5 \times \mathrm{T}_{\mathrm{SPICC}} + 3.0 \times \\ \mathrm{T}_{\mathrm{C}} + 5 \end{array}$	49.5	_	ns
			Very Narrow	$\begin{array}{c} 0.5 \times \mathrm{T}_{\mathrm{SPICC}} + 3.0 \times \\ \mathrm{T}_{\mathrm{C}} + 5 \end{array}$	49.5	_	ns
			Narrow	$\begin{array}{c} 0.5 \times \mathrm{T_{SPICC}} + 3.0 \times \\ \mathrm{T_{C}} + 5 \end{array}$	111.5	—	ns
			Wide	$\begin{array}{c} 0.5 \times \mathrm{T}_{\mathrm{SPICC}} + 3.0 \times \\ \mathrm{T}_{\mathrm{C}} + 5 \end{array}$	206.5		ns

Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)

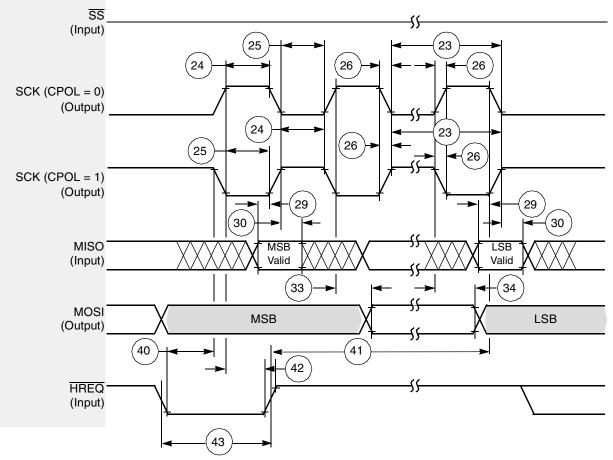


Figure 16. SPI Master Timing Diagram (CPHA = 1)

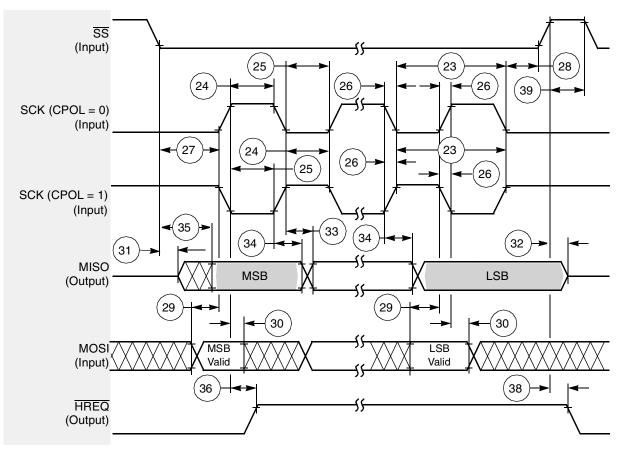


Figure 17. SPI Slave Timing Diagram (CPHA = 0)

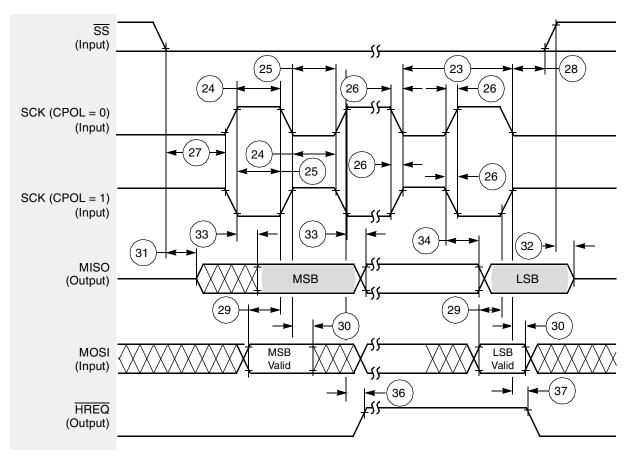


Figure 18. SPI Slave Timing Diagram (CPHA = 1)

2.11 Serial Host Interface (SHI) I²C Protocol Timing

Table 9 lists the SHI I²C protocol timing parameters and Figure 19 shows the timing diagram.

Table 9. SHI I²C Protocol Timing Parameters

Standard I ² C								
No.	Characteristics ^{1,2,3,4,5}	Symbol/	Standard		Fast-Mode		Unit	
		Expression	Min	Мах	Min	Max	Unit	
	Tolerable Spike Width on SCL or SDA Filters Bypassed Very Narrow Filters enabled Narrow Filters enabled Wide Filters enabled.	-	 	0 10 50 100		0 10 50 100	ns ns ns ns	
44	SCL clock frequency	F _{SCL}	_	100	—	400	kHz	
44	SCL clock cycle	T _{SCL}	10	—	2.5	—	μs	
45	Bus free time	T _{BUF}	4.7	—	1.3	—	μs	
46	Start condition set-up time	T _{SUSTA}	4.7	—	0.6	—	μs	
47	Start condition hold time	T _{HD;STA}	4.0	—	0.6	—	μs	

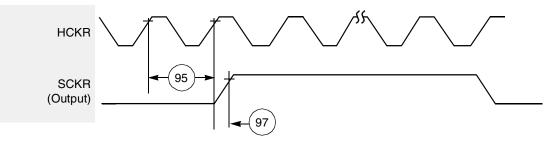


Figure 23. ESAI HCKR Timing

2.14 Timer Timing

Table 11 lists the timer timing parameters and Figure 24 shows the timing diagram.

Table 11. Timer Timing Parameters	. Timer Timing Parameters
-----------------------------------	---------------------------

No.	Characteristics	Expression			Unit
10.	Characteristics	Expression	Min	Мах	onn
98	TIO Low	$2 \times T_{C} + 2.0$	12.0		ns
99	TIO High	$2 \times T_{C} + 2.0$	12.0	_	ns

Notes:

1. V_{CORE VDD} = 1.00 V \pm 0.10 V; T_J = -40°C to 100°C, C_L = 50 pF

2. TIMER_1 specs match those of TIMER

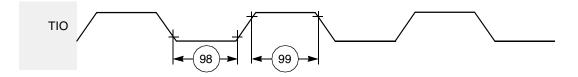


Figure 24. TIO Timer Event Input Restrictions Diagram

2.15 GPIO Timing

Table 12 lists the general purpose input and output (GPIO) timing and Figure 25 shows the timing diagram.

 Table 12. GPIO Timing Parameters

No.	Characteristics ¹	Expression Min			Unit
100	Fsys edge to GPIO out valid (GPIO out delay time) ²	— — 7 ns			ns
101	Fsys edge to GPIO out not valid (GPIO out hold time) ²	— — 7 ns			ns
102	Fsys In valid to EXTAL edge (GPIO in set-up time) ²	—	2		ns
103	Fsys edge to GPIO in not valid (GPIO in hold time) ²	— 0 —		_	ns
104	Minimum GPIO pulse high width	2 × TC	10	_	ns

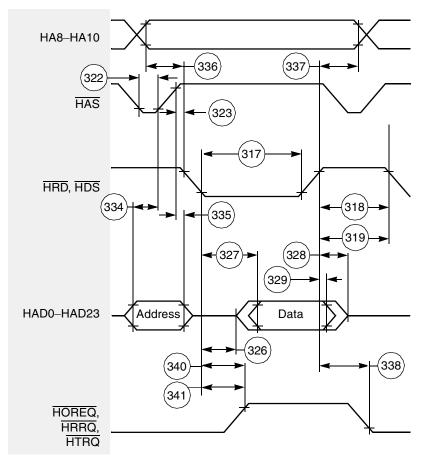


Figure 32. HDI24 Read Timing Diagram, Multiplexed Bus

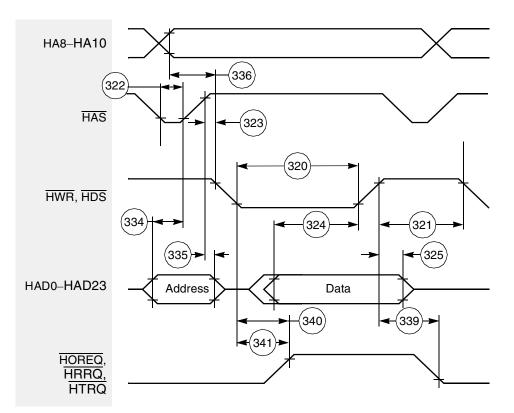


Figure 33. HDI24 Write Timing Diagram, Multiplexed Bus

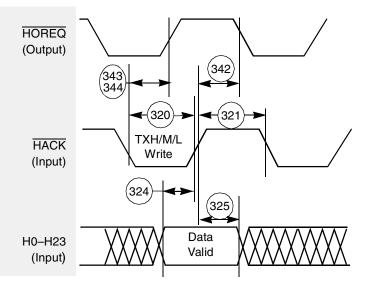


Figure 34. HDI24 Host DMA Write Timing Diagram

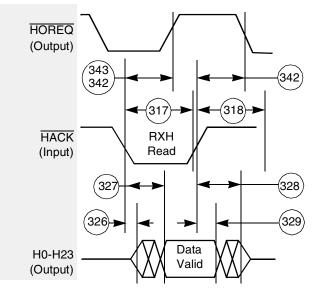


Figure 35. HDI24 Host DMA Read Timing Diagram

2.19 S/PDIF Timing

Table 16 lists the Sony/Philips Digital Interconnect Format (S/PDIF) timing parameters and Figure 36 and Figure 37 show the timing diagrams.

Table 16.	S/PDIF	Timina	Parameters
		g	i ulumeters

Characteristics	Symbol	All Free	quency	Unit	
Characteristics	Symbol	Min	Мах		
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew: asynchronous inputs, no specs apply	_	_	0.7	ns	
 SPDIFOUT1,SPDIFOUT2 output (Load = 50 pf) Skew Transition Risng Transition Falling 	 	 _	1.5 24.2 31.3	ns	
 SPDIFOUT1, SPDIFOUT2 output (Load = 30 pf) Skew Transition Risng Transition Falling 	 		1.5 13.6 18.0	ns	
SRCK period	srckp	40.0	_	ns	
SRCK high period	srckph	16.0	_	ns	
SRCK low period	srckpl	16.0	_	ns	
STCLK period	stclkp	40.0	_	ns	
STCLK high period	stclkph	16.0	—	ns	
STCLK low period	stclkpl	16.0		ns	

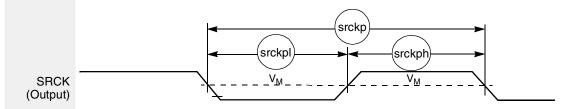


Figure 36. S/PDIF SRCK Timing Diagram

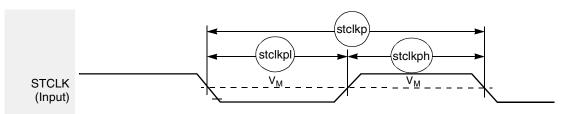


Figure 37. S/PIDF STCLK Timing Diagram

2.20 EMC Timing (DSP56720 Only)

The DSP56721 device does not have an EMC module. For EMC timing parameters in DSP56720 devices, see Table 17, through Table 19; for timing diagrams, see Figure 38 through Figure 40.

Parameter	Symbol	Min	Мах	Unit
LCLK cycle time	T _{clk}	10	—	ns
LCLK skew to LSYNC_OUT	T _{clk_skew}	—	160	ps
Input setup to LSYNC_IN (except LGTA/LUPWAIT)	T _{in_s}	3	—	ns
Input hold from LSYNC_IN (except LGTA/LUPWAIT)	T _{in_h}	2	—	ns
LGTA valid time	T _{gta}	12	—	ns
LUPWAIT valid time	T _{upwait}	12	—	ns
LALE negedge to LAD(address phase) invaild (address latch hold time)	T _{ale_h}	3	—	ns
LALE valid time	T _{ale}	3.8	—	ns
Output setup from LSYNC_IN (except LAD[23:0] and LALE)	T _{out_s}	4	—	ns
Output hold from LSYNC_IN (except LAD[23:0] and LALE)	T _{out_h}	2	—	ns
LAD[23:0] output setup from LSYNC_IN	T _{ad_s}	3.5	—	ns
LAD[23:0] output hold from LSYNC_IN	T _{ad_h}	1.5	—	ns
LSYNC_IN to output high impedance for LAD[23:0]	T _{ad_z}		4.3	ns

Table 17. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)

Chapter 22, "External Memory Controller (EMC)," in the *Symphony DSP56720/DSP56721 Multi-Core Audio Processors Reference Manual* explains in detail the interfacing and features of EMC. The applicable sections are as follows:

- Section 22.4.4.3, "UPM Signal Timing"
- Section 22.4.4.7, "Memory System Interface Example Using UPM"

Parameter	Symbol	Min	Max	Unit
LAD[23:0] output setup from LCLK	T _{ad_s}	12	—	ns
LAD[23:0] output hold from LCLK	T _{ad_h}	17	—	ns
LCLK to output high impedance for LAD[23:0]	T _{ad_z}		17.1	ns

Table 19. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) (Continued)

Notes:

1. A negative hold time means that the signal could be invalid before the LCLK rising edge.

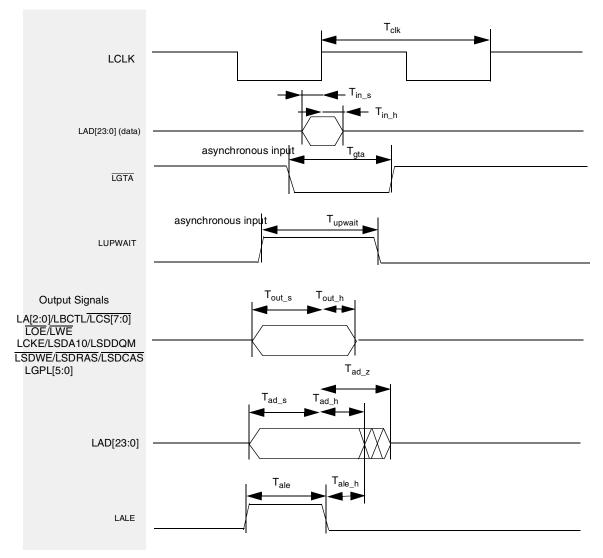


Figure 40. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)

3 Functional Description and Application Information

See the Symphony™ DSP56720/DSP56721 Multi-Core Audio Processors Reference Manual (DSP56720RM) for detailed functional and applications information.

4 Ordering Information

Table 20 provides ordering information for both the DSP56720 and DSP56721.

- -				
Device	Device Marking	Ambient Temp.	LQFP Package	
DSP56720 Commercial	DSPA56720AG	0°C–70°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPB56720AG	0°C–70°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPC56720AG	0°C–70°C	$20 \text{ mm} \times 20 \text{ mm}$	
DSP56720 Automotive	DSPA56720CAG	-40°C-85°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPB56720CAG	-40°C-85°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPC56720CAG	-40°C-85°C	20 mm × 20 mm	
DSP56721 Commercial	DSPA56721AG	0°C–70°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPB56721AG	0°C–70°C	20 mm × 20 mm	
	DSPC56721AG	0°C–70°C	20 mm × 20 mm	
	DSPA56721AF	0°C–70°C	14 mm × 14 mm	
	DSPB56721AF	0°C–70°C	14 mm × 14 mm	
	DSPC56721AF	0°C–70°C	14 mm × 14 mm	
DSP56721 Automotive	DSPA56721CAG	-40°C-85°C	$20 \text{ mm} \times 20 \text{ mm}$	
	DSPB56721CAG	-40°C-85°C	20 mm × 20 mm	
	DSPC56721CAG	-40°C-85°C	20 mm × 20 mm	
	DSPA56721CAF	-40°C-85°C	14 mm × 14 mm	
	DSPB56721CAF	-40°C-85°C	14 mm × 14 mm	
	DSPC56721CAF	-40°C-85°C	14 mm × 14 mm	

Table 20. Ordering Information

5 Package Information

For the outline drawings of available device packages, see Table 21 and sections 5.1–5.2.

Table 21. Package Outline Drawings

Device	Package	See
DSP56720	144-pin plastic LQFP	Figure 43 on page 51 and Figure 44 on page 52
DSP56721	80-pin plastic LQFP	Figure 43 on page 51 and Figure 42 on page 50
	144-pin plastic LQFP	Figure 43 on page 51 and Figure 44 on page 52

Figure 44. 144-Pin Package Outline Drawing (2 of 2)

NOTES

- ¹ All dimensinos are in millimeters
- ² Interpret dimensions and tolerances per ASME Y14.5M-1994.
- ³ Datums B, C and D to be determined at datum plane H.
- ⁴ The top ppackage body size may be smaller than the bottom package size by a maximum of 0.1 mm.
- ⁵ These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions are maximum body size dimensions including mold mismatch.
- ⁶ This dimension does not include dambar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm minimum space between protrusion and an adjacent lead shall be 0.07 mm.

⁷ These dimensions are determined at the seating plane, datum A.

6 **Product Documentation**

This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these types are available at: http://www.freescale.com. Documentation is available from a local Freescale Semiconductor, Inc. distributor, semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet (the source for the latest information).

The following documents are required for a complete description of the device and are necessary to design properly with the parts:

DSP56300 Family Manual (document number DSP56300FM). Detailed description of the 56300-family architecture and the 24-bit core processor and instruction set.

Symphony™ DSP56720/DSP56721 Multi-Core Audio Processors Reference Manual (document number DSP56720RM). Detailed description of memory, peripherals, and interfaces.

DSP56720 Product Brief (DSP56720PB). Brief description of the DSP56720 device.

DSP56721 Product Brief (DSP56721PB). Brief description of the DSP56721 device.

7 Revision History

Table 22 summarizes revisions to this document.

Table 22. Revision History

Revision	Date	Description
5	02/2009	 Updated values and added Commercial and Automotive columns in Table 4, "DC Electrical Characteristics." Updated values in the following tables: Table 7, Table 9, Table 10, Table 11, Table 12, Table 13, Table 15, Table 17, Table 18, and Table 19. In Table 10, "Enhanced Serial Audio Interface Timing Parameters," changed value for 87 to "13". Added Section 2.4, "Power Consumption Considerations." In Section 2.20, "EMC Timing (DSP56720 Only)," added text regarding the EMC chapter and applicable sections. Added automotive information to Table 20, "Ordering Information."
4	04/2008	 Added formula for thermal characteristics on page 10. Added values for pull-up and pull-down resistors on page 12.
3	03/2008	 Updated order information on page 1 to include additional parts with temperature specification.
2	02/2008	Timing updates.
1	12/2007	Initial release

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: DSP56720EC Rev. 5 02/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2009. All rights reserved.

