

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck128mp202t-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

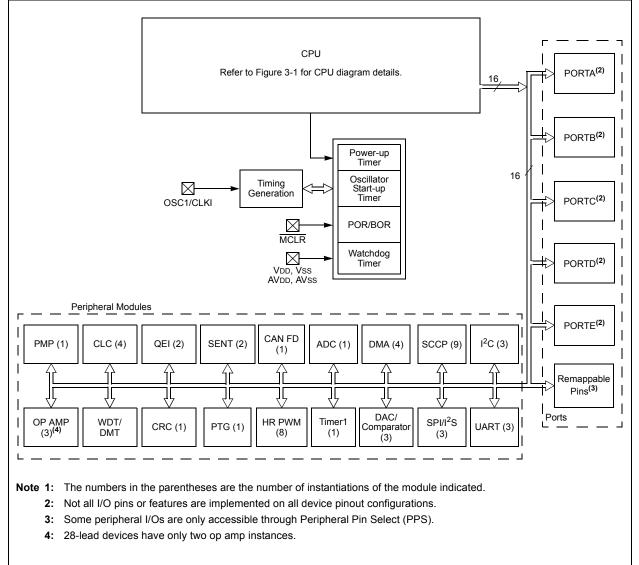
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

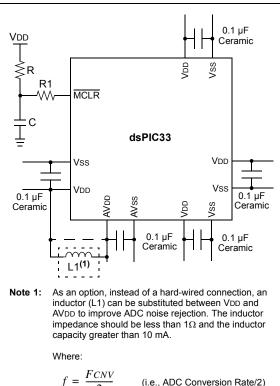
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33CK256MP508 Digital Signal Controller (DSC) and Microcontroller (MCU) devices.


dsPIC33CK256MP508 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

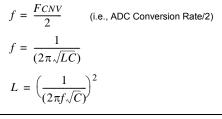

Figure 1-1 shows a general block diagram of the core and peripheral modules of the dsPIC33CK256MP508 family. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

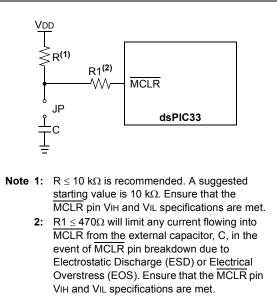
FIGURE 1-1: dsPIC33CK256MP508 FAMILY BLOCK DIAGRAM⁽¹⁾

2.2.1 BULK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the bulk capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components, as shown in Figure 2-2, within one-quarter inch (6 mm) from the MCLR pin.

TABLE 7-4 :	INTERRUPT PRIORITY REGISTERS
--------------------	------------------------------

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC0	840h	_	CNBIP2	CNBIP1	CNBIP0		CNAIP2	CNAIP1	CNAIP0	_	T1IP2	T1IP1	T1IP0	_	INT0IP2	INT0IP1	INT0IP0
IPC1	842h	_	CCT1IP2	CCT1IP1	CCT1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0			_	_	_	DMA0IP2	DMA0IP1	DMA0IP0
IPC2	844h	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	_	DMA1IP2	DMA1IP1	DMA1IP0
IPC3	846h	_	INT1IP2	INT1IP1	INT1IP0	_	NVMIP2	NVMIP1	NVMIP0	_	ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	_	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	848h	_	CNCIP2	CNCIP1	CNCIP0	_	DMA2IP2	DMA2IP1	DMA2IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	84Ah	_	CCP2IP2	CCP2IP1	CCP2IP0	_	_	_	_	_	DMA3IP2	DMA3IP1	DMA3IP20	_	INT2IP2	INT2IP1	INT2IP0
IPC6	84Ch	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT3IP2	INT3IP1	INT3IP0	_	C1IP2	C1IP1	C1IP0	_	CCT2IP2	CCT2IP1	CCT2IP0
IPC7	84Eh	_	C1RXIP2	C1RXIP1	C1RXIP0	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	U2TXIP2	U2TXIP1	U2TXIP0
IPC8	850h	_	CCP3IP2	CCP3IP1	CCP3IP0	_	-	_	_	_	_	_	_	_	_	_	_
IPC9	852h	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	CCT3IP2	CCT3IP1	CCT3IP0
IPC10	854h	_	CCP5IP2	CCP5IP1	CCP5IP0	_	_	_	_	_	CCT4IP2	CCT4IP1	CCT4IP0	_	CCP4IP2	CCP4IP1	CCP4IP0
IPC11	856h	_	CCT6IP2	CCT6IP1	CCT6IP0	_	CCP6IP2	CCP6IP1	CCP6IP0	_	DMTIP2	DMTIP1	DMTIP0	_	CCT5IP2	CCT5IP1	CCT5IP0
IPC12	858h	_	CRCIP2	CRCIP1	CRCIP0	_	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	_	QEI1IP2	QEI1IP1	QEI1IP0
IPC13	85Ah	_	_	_	_	_	QEI2IP2	QEI2IP1	QEI2IP0	_	_	_	_	_	C1TXIP2	C1TXIP1	C1TXIP0
IPC14	85Ch	_	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	_	U3TXIP2	U3TXIP1	U3TXIP1	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3EIP2	U3EIP1	U3EIP0
IPC15	85Eh	_	PTGSTEPIP2	PTGSTEPIP1	PTGSTEPIP0	_	JTAGIP2	JTAGIP1	JTAGIP0	_	ICDIP2	ICDIP1	ICDIP0	_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0
IPC16	860h	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
IPC17	862h	_	PWM5IP2	PWM5IP1	PWM5IP0	_	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0	_	PWM2IP2	PWM2IP1	PWM2IP0
IPC18	864h	_	CNDIP2	CNDIP1	CNDIP0	_	PWM8IP2	PWM8IP1	PWM8IP0	_	PWM7IP2	PWM7IP1	PWM7IP0	_	PWM6IP2	PWM6IP1	PWM6IP0
IPC19	866h	_	CMP3IP2	CMP3IP1	CMP3IP0	_	CMP2IP2	CMP2IP1	CMP2IP0	_	CMP1IP2	CMP1IP1	CMP1IP0	_	CNEIP2	CNEIP1	CNEIP0
IPC20	868h	_	PTG1IP2	PTG1IP1	PTG1IP0	_	PTG0IP2	PTG0IP1	PTG0IP0	_	PTGWDTIP2	PTGWDTIP1	PTGWDTIP0	—	—	—	_
IPC21	86Ah	_	SENT1EIP2	SENT1EIP1	SENT1EIP0	_	SENT1IP2	SENT1IP1	SENT1IP0	_	PTG3IP2	PTG3IP1	PTG3IP0	—	PTG2IP2	PTG2IP1	PTG2IP0
IPC22	86Ch	_	ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	_	ADCIP2	ADCIP1	ADCIP0	_	SENT2EIP2	SENT2EIP1	SENT2EIP0	_	SENT2IP2	SENT2IP1	SENT2IP0
IPC23	86Eh	_	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0		ADCAN3IP2	ADCAN3IP1	ADCAN3IP0		ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	_	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0
IPC24	870h	_	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0		ADCAN7IP2	ADCAN7IP1	ADCAN7IP0		ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	_	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0
IPC25	872h	—	ADCAN12IP2	ADCAN12IP1	ADCAN12IP0		ADCAN11IP2	ADCAN11IP1	ADCAN11IP0		ADCAN10IP2	ADCAN10IP1	ADCAN10IP0	_	ADCAN9IP2	ADCAN9IP1	ADCAN9IP0
IPC26	874h	-	ADCAN16IP2	ADCAN16IP2	ADCAN16IP2		ADCAN15IP2	ADCAN15IP1	ADCAN15IP0		ADCAN14IP2	ADCAN14IP1	ADCAN14IP0	_	ADCAN13IP2	ADCAN13IP1	ADCAN13IPC
IPC27	876h	-	ADCAN20IP2	ADCAN20IP1	ADCAN20IP0		ADCAN19IP2	ADCAN19IP1	ADCAN19IP0		ADCAN18IP2	ADCAN18IP1	ADCAN18IP0	_	ADCAN17IP2	ADCAN17IP1	ADCAN17IPC
IPC28	878h	-	ADFLTIP2	ADFLTIP1	ADFLTIP0		ADCAN23IP2	ADCAN23IP1	ADCAN22IP0		ADCAN22IP2	ADCAN22IP1	ADCAN22IP0	_	ADCAN21IP2	ADCAN21IP1	ADCAN21IPC
IPC29	87Ah	-	ADCMP3IP2	ADCMP3IP1	ADCMP3IP0		ADCMP2IP2	ADCMP2IP1	ADCMP2IP0		ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	ADCMP0IP2	ADCMP0IP1	ADCMP0IP0
IPC30	87Ch	-	ADFLTR3IP2	ADFLTR3IP1	ADFLTR3IP0		ADFLTR2IP2	ADFLTR2IP1	ADFLTR2IP0		ADFLTR1IP2	ADFLTR1IP1	ADFLTR1IP0	_	ADFLTR0IP2	ADFLTR0IP1	ADFLTR0IP0
IPC31	87Eh	_	SPI2GIP0	SPI2GIP1	SPI2GIP0	_	SPI1GIP2	SPI1GIP1	SPI1GIP0	_	CLC2PIP2	CLC2PIP1	CLC2PIP0	_	CLC1PIP2	CLC1PIP1	CLC1PIP0
IPC32	880h	_	_	_	_	_	_	—	—	_	—	—	_	_	SPI3GIP2	SPI3GIP1	SPI3GIP0
IPC33	882h	_	_	_	_	_	_	—	_	_	—	_	_	_	—	—	—
IPC34	884h	_	_	_	_	_	_	_	—	_	_	—	_	_	—	—	_

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

The dsPIC33CK256MP508 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.0.1 INTCON1 through INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.0.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.0.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.0.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

7.4.0.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

7.4.0.6 Status/Control Registers

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0				
_	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0				
bit 15							bit 8				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	•	ted: Read as '									
bit 13	VHOLD: Vect	tor Number Ca	oture Enable b	oit							
			l current value	of vector numb	per encoding tree	e (i.e., highest p	riority pending				
	interrupt)		nto VECNII IM<	7·0> at Interru	pt Acknowledge	and retained u	Intil nevt IACk				
bit 12		ted: Read as '			ipt Acknowledge						
bit 11-8	-	ew CPU Interru		ol bite							
bit 11-0		Interrupt Priorit	•								
		interrupt i nom									
	0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0										
		•	5								
bit 7-0		0>: Vector Nun		g Interrupt bits	6						
	11111111 = 255, Reserved; do not use										
	 00001001 = 9, IC1 – Input Capture 1										
	00001000 = 8, INTO – External Interrupt 0										
	00000111 = 7, Reserved; do not use 00000110 = 6, Generic soft error trap										
		 Generic soft Reserved; d 									
		4, Math error tr									
	00000011 =	3, Stack error t	rap								
		2, Generic har									
		1, Address erro 0, Oscillator fai									
	- 00000000 -	o, Oscillator Idi	iuap								

8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK256MP508 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change									
	Notification pins should always be									
	disabled when the port pin is configured									
	as a digital output.									

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

TABLE 8-12: PORTE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSLE	_	—	—	—	—	_	—	_	_	—	—	_	—	_	_	_
TRISE		TRISE<15:0>														
PORTE		RE<15:0>														
LATE		LATE<15:0>														
ODCE		ODCE<15:0>														
CNPUE		CNPUE<15:0>														
CNPDE							(CNPDE<1	5:0>							
CNCONE	ON	—	—	—	CNSTYLE	_	_	_	_	—	_	_	_	_	_	_
CNEN0E							C	NEN0E<1	5:0>							
CNSTATE							С	NSTATE<1	5:0>							
CNEN1E							C	NEN1E<1	5:0>							
CNFE								CNFE<15	0>							

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI15R7 | PCI15R6 | PCI15R5 | PCI15R4 | PCI15R3 | PCI15R2 | PCI15R1 | PCI15R0 |
| bit 15 | | | | | | • | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI14R7	PCI14R6	PCI14R5	PCI14R4	PCI14R3	PCI14R2	PCI14R1	PCI14R0
bit 7							bit 0

REGISTER 8-47: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PCI15R<7:0>: Assign PWM Input 15 (PCI15) to the Corresponding RPn Pin bits
	See Table 8-4.
bit 7-0	PCI14R<7:0>: Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits
	See Table 8-4.

REGISTER 8-48: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT1R7 | SENT1R6 | SENT1R5 | SENT1R4 | SENT1R3 | SENT1R2 | SENT1R1 | SENT1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI16R7 | PCI16R6 | PCI16R5 | PCI16R4 | PCI16R3 | PCI16R2 | PCI16R1 | PCI16R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SENT1R<7:0>: Assign SENT1 Input (SENT1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **PCI16<7:0>:** Assign PWM Input 16 (PCI16) to the Corresponding RPn Pin bits See Table 8-4.

—

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP181R5 ⁽¹⁾	RP181R4 ⁽¹⁾	RP181R3 ⁽¹⁾	RP181R2 ⁽¹⁾	RP181R1 ⁽¹⁾	RP181R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP180R5 ⁽¹⁾	RP180R4 ⁽¹⁾	RP180R3 ⁽¹⁾	RP180R2 ⁽¹⁾	RP180R1 ⁽¹⁾	RP180R0 ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP181R<5:0>: Peripheral Output Function is Assigned to RP181 Output Pin bits
	(see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP180R<5:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 9-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
—	_	—	—	—	—	—	—
bit 15							bit 8

R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	
APLLFBDIV<7:0>								
bit 7							bit 0	

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 Reserved: Maintain as '0'

- bit 7-0 APLLFBDIV<7:0>: APLL Feedback Divider bits
 - 11111111 = Reserved
 - ... 11001000 **= 200** maximum⁽¹⁾

... 10010110 = **150 (default)**

... 00010000 = 16 minimum⁽¹⁾

- ... 00000010 = Reserved 00000001 = Reserved 00000000 = Reserved
- **Note 1:** The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HSC				
ROEN		ROSIDL	ROOUT	ROSLP	_	ROSWEN	ROACTIV				
bit 15				-			bit 8				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_			ROSEL3	ROSEL2	ROSEL1	ROSEL0				
bit 7							bit (
			<u> </u>		0 11 11 10						
Legend:	1.1.1	HC = Hardwar		HSC = Hardw							
R = Readab		W = Writable I	DIT	U = Unimpler							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	ROEN: Re	eference Clock Er	able bit								
		ence Oscillator is		REFCLKO pin							
		ence Oscillator is		·· • -··• p···							
bit 14	Unimplem	nented: Read as	'0'								
bit 13	ROSIDL: F	Reference Clock	Stop in Idle bit								
	1 = Refere	ence Oscillator co	ntinues to run ir	n Idle mode							
	0 = Refere	ence Oscillator is	disabled in Idle	mode							
bit 12	ROOUT: R	Reference Clock (Dutput Enable b	bit							
		 1 = Reference clock external output is enabled and available on the REFCLKO pin 0 = Reference clock external output is disabled 									
			•								
bit 11		Reference Clock S	• •								
		ence Oscillator co ence Oscillator is		•							
bit 10		nented: Read as		p modes							
bit 9	-	Reference Clock		a hit							
			•		NVx) is reque	sted or is in pro	ogress (set in				
	 1 = Clock divider change (requested by changes to RODIVx) is requested or is in progress (set in software, cleared by hardware upon completion) 										
	0 = Clock divider change has completed or is not pending										
bit 8		Reference Clock									
		ence clock is activ ence clock is stop			ation may be s	afely changed					
bit 7-4		nented: Read as			ation may be 3	alory changed					
bit 3-0	-	:0>: Reference C		lect bits							
	1111 = Re										
	1000 = Reserved										
	0111 = REFI pin										
	0110 = Fv 0101 = BF										
	0101 - BF 0100 = LP										
	0011 = FR										
	0011 11										
	0010 = Pr i	imary Oscillator									
	0010 = Pri 0001 = Pe										

REGISTER 9-10: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER

NOTES:

REGISTER 12-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾ **(CONTINUED)**

bit 2-0 EVTyPGS<2:0>: PWM Event Source Selection bits⁽²⁾ 111 = PWM Generator 8 110 = PWM Generator 7 ... 000 = PWM Generator 1

- **Note 1:** The event signal is stretched using peripheral_clk because different PWM Generators may be operating from different clock sources.
 - 2: No event will be produced if the selected PWM Generator is not present.
 - 3: This is the PWM Generator output signal prior to output mode logic and any output override logic.
 - **4:** This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
 - 5: 'y' denotes a common instance (A-F).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	_	—	—	—	
bit 15 bit 8								

R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
FORM	SHRRES1	SHRRES0	—	—	—	—	—
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	FORM: Fractional Data Output Format bit
	1 = Fractional
	0 = Integer
bit 6-5	SHRRES<1:0>: Shared ADC Core Resolution Selection bits
	11 = 12-bit resolution
	10 = 10-bit resolution
	01 = 8-bit resolution
	00 = 6-bit resolution
bit 4-0	Unimplemented: Read as '0'

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
SLOPEN	—	—	—	HME ⁽¹⁾	TWME ⁽²⁾	PSE	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable bit		U = Unimpler	mented bit, read	as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared			
bit 15 bit 14-12	1 = Enables 0 = Disables	ope Function Ena slope function slope function; sl nted: Read as '0'		ator is disabled	to reduce powe	er consumption		
bit 11	HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx 0 = Disables Hysteretic mode for DACx							
bit 10	1 = Enables	ngle Wave Mode I Triangle Wave m Triangle Wave m	ode for DACx					
bit 9	 PSE: Positive Slope Mode Enable bit 1 = Slope mode is positive (increasing) 0 = Slope mode is negative (decreasing) 							
bit 8-0	Unimplemer	nted: Read as '0'						
Note 1: ⊢	IME mode reau	ires the user to d	isable the slo	pe function (SL	OPEN = 0).			

REGISTER 14-8: SLPxCONH: DACx SLOPE CONTROL HIGH REGISTER

- **Note 1:** HME mode requires the user to disable the slope function (SLOPEN = 0).
 - 2: TWME mode requires the user to enable the slope function (SLOPEN = 1).

REGISTER 15-13: INTXxHLDL: INTERVAL x TIMER HOLD REGISTER LOW

		'1' = Bit is set	it.	'0' = Bit is cleared		x = Bit is unkr	nown
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
Legend:							
bit 7							bit 0
			INTH	LD<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
L:1 4 F				D 13.02			L:1 0
			INTHI	_D<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 INTHLD<15:0>: Low Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

REGISTER 15-14: INTXxHLDH: INTERVAL x TIMER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	.D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	.D<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

bit 15-0 INTHLD<31:16>: High Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

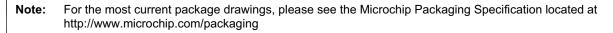
Field	Description		
Wm*Wm Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 Working registers ∈ {W0W15}		
Wnd	One of 16 Destination Working registers ∈ {W0W15}		
Wns	One of 16 Source Working registers ∈ {W0W15}		
WREG	W0 (Working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}		
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}		
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		

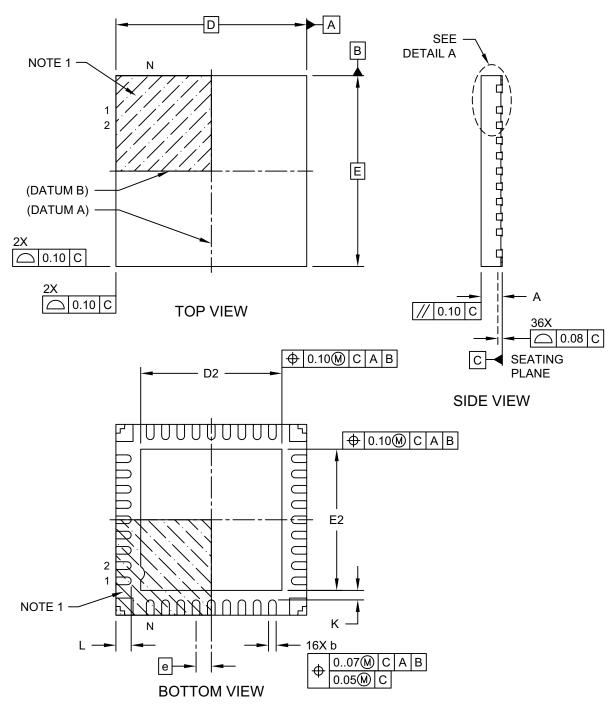
TABLE 33-16: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	-5 ^(1,4)	mA	All pins	
DI60b	ІІСН	Input High Injection Current	0	+5(2,3,4)	mA	All pins, excepting all 5V tolerant pins and SOSCI	
DI60c	∑Ііст	Total Input Injection Current (sum of all I/O and control pins) ⁽⁵⁾	-20	+20	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

Note 1: VIL Source < (Vss - 0.3).

2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.


- **3:** 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **4:** Injection currents can affect the ADC results.
- 5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted in the sum.


TABLE 33-17: I/O PIN OUTPUT SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DO10	Vol	Output Low Voltage 4x Sink Driver Pins	_	_	0.42	V	VDD = 3.6V, IOL < 9 mA		
		Output Low Voltage 8x Sink Driver Pins ⁽¹⁾	—	—	0.4	V	VDD = 3.6V, IOL < 11 mA		
DO20	Vон	Output High Voltage 4x Source Driver Pins	2.4	_	—	V	Vdd = 3.6V, Ioн > -8 mA		
		Output High Voltage 8x Source Driver Pins ⁽¹⁾	2.4	_	—	V	Vdd = 3.6V, Iон > -12 mA		

Note 1: 8x sink/source pins are RB1, RC8, RC9 and RD8.

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Microchip Technology Drawing C04-436A-M5 Sheet 1 of 2