

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck128mp205t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 9.0 "Oscillator with High-Frequency PLL") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

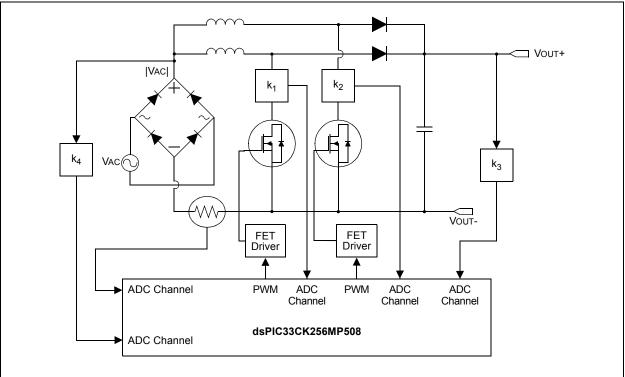

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

FIGURE 2-4: INTERLEAVED PFC

2.8 Targeted Applications

- Power Factor Correction (PFC):
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters:
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
- Resonant Converters
- · DC/AC:
 - Half/Full-Bridge Inverter
 - Resonant Inverter
- Motor Control
 - BLDC
 - PMSM
 - SR
 - ACIM

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PTG			CCP1CON3H	95A	00000-00	CCP3PRL	9AC	1111111111111111111
PTGCST	900	00-00000x00	CCP1STATL	95C	000xx0000	CCP3PRH	9AE	111111111111111111
PTGCON	902	000000000000-000	CCP1STATH	95E	00000	CCP3RAL	9B0	000000000000000000000000000000000000000
PTGBTE	904	*****	CCP1TMRL	960	000000000000000000	CCP3RBL	9B4	000000000000000000000000000000000000000
PTGBTEH	906	000000000000000000	CCP1TMRH	962	000000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
PTGHOLD	908	000000000000000000	CCP1PRL	964	111111111111111111	CCP3BUFH	9BA	000000000000000000000000000000000000000
PTGT0LIM	90C	000000000000000000	CCP1PRH	966	111111111111111111	CCP4CON1L	9BC	0000000000000000000000000000000000000
PTGT1LIM	910	000000000000000000	CCP1RAL	968	000000000000000000	CCP4CON1H	9BE	00000000000000
PTGSDLIM	914	000000000000000000000000000000000000000	CCP1RBL	96C	000000000000000000	CCP4CON2L	9C0	00-000000000
PTGC0LIM	918	000000000000000000000000000000000000000	CCP1BUFL	970	000000000000000000	CCP4CON2H	9C2	100-00000
PTGC1LIM	91C	000000000000000000	CCP1BUFH	972	000000000000000000	CCP4CON3H	9C6	00000-00
PTGADJ	920	000000000000000000	CCP2CON1L	974	000000000000000	CCP4STATL	9C8	000xx0000
PTGL0	924	000000000000000000000000000000000000000	CCP2CON1H	976	00000000000000	CCP4STATH	9CA	00000
PTGQPTR	928	00000	CCP2CON2L	978	00-000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
PTGQUE0	930	****	CCP2CON2H	97A	0100-00000	CCP4TMRH	9CE	000000000000000000000000000000000000000
PTGQUE1	932	*****	CCP2CON3H	97E	00000-00	CCP4PRL	9D0	111111111111111111
PTGQUE2	934	****	CCP2STATL	980	000xx0000	CCP4PRH	9D2	1111111111111111111
PTGQUE3	936	*****	CCP2STATH	982	00000	CCP4RAL	9D4	000000000000000000000000000000000000000
PTGQUE4	938	*****	CCP2TMRL	984	000000000000000000	CCP4RBL	9D8	000000000000000000000000000000000000000
PTGQUE5	93A	*****	CCP2TMRH	986	000000000000000000	CCP4BUFL	9DC	000000000000000000000000000000000000000
PTGQUE6	93C	*****	CCP2PRL	988	111111111111111111	CCP4BUFH	9DE	000000000000000000000000000000000000000
PTGQUE7	93E	*****	CCP2PRH	98A	111111111111111111	CCP5CON1L	9E0	0000000000000000000000000000000000000
PTGQUE8	940	*****	CCP2RAL	98C	000000000000000000	CCP5CON1H	9E2	00000000000000
PTGQUE9	942	*****	CCP2RBL	990	000000000000000000	CCP5CON2L	9E4	00-000000000
PTGQUE10	944	*****	CCP2BUFL	994	000000000000000000	CCP5CON2H	9E6	100-00000
PTGQUE11	946	*****	CCP2BUFH	996	000000000000000000	CCP5CON3H	9EA	00000-00
PTGQUE12	948	*****	CCP3CON1L	998	000000000000000	CCP5STATL	9EC	000xx0000
PTGQUE13	94A	*****	CCP3CON1H	99A	00000000000000	CCP5STATH	9EE	00000
PTGQUE14	94C	*****	CCP3CON2L	99C	00-000000000	CCP5TMRL	9F0	000000000000000000000000000000000000000
PTGQUE15	94E	*****	CCP3CON2H	99E	100-00000	CCP5TMRH	9F2	000000000000000000000000000000000000000
CCP	•		CCP3CON3H	9A2	00000-00	CCP5PRL	9F4	111111111111111111
CCP1CON1L	950	000000000000000	CCP3STATL	9A4	000xx0000	CCP5PRH	9F6	111111111111111111
CCP1CON1H	952	00000000000000	CCP3STATH	9A6	00000	CCP5RAL	9F8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP3TMRL	9A8	000000000000000000	CCP5RBL	9FC	000000000000000000000000000000000000000
CCP1CON2H	956	100-00000	CCP3TMRH	9AA	000000000000000000000000000000000000000		•	

TABLE 4-10: SFR BLOCK 900h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

TABLE 8-1: PIN AND ANSELx AVAILABILITY

Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
						POR	ΓΑ									
dsPIC33XXXMP508/208						_			_		_	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	_	_		_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	_				—	_	_	—	_		Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	_	_				—	_	_	—	_		Х	Х	Х	Х	Х
ANSELA				_		—	—	—	—	_		Х	Х	Х	Х	Х
						POR	ГВ									-
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB	_	_	_			_	Х	Х	Х	_		Х	Х	Х	Х	Х
						POR	ГС									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	—	—	—	—	_	—	—	—	—	—	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	—	—	—	—	_	—	—	—	—	—	_	—	—	—		—
ANSELC				—	_	—	—	_	Х	Х	—	—	Х	Х	Х	Х
						POR	TD									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	—	—	Х	—	—	Х	—	Х	—	—	—	—	—	—	Х	—
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP502/202	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
ANSELD		—	Х		Х	Х	—	—	—	—	—	—		—	—	—
					-	POR	ΓE									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—
dsPIC33XXXMP504/204	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	—
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP502/202	_	_		—	_	—	—	—	—	_		—	—	—	—	—
ANSELE	_	_	_	—	_	_	_	_	_	—	_	Х	Х	Х	Х	Х

TABLE 8-2: 5V INPUT TOLERANT PORTS

PORTA	—	—	—	—	—	—	—	—	—	—	—	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0

Legend: Shaded pins are up to 5.5 VDC input tolerant.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
bit 7							bit 0

REGISTER 8-60: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP45R<5:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP44R<5:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-61: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP47R<5:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 8-7 for peripheral function numbers)

Equation 9-1 provides the relationship between the PLL Input Frequency (FPLLI) and VCO Output Frequency (FVCO).

EQUATION 9-1: Fvco CALCULATION

 $FVCO = FPLLI \times \left(\frac{M}{N1}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0>}\right)$

Equation 9-2 provides the relationship between the PLL Input Frequency (FPLLI) and PLL Output Frequency (FPLLO).

EQUATION 9-2: FPLLO CALCULATION

 $FPLLO = FPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0> \times POST1DIV < 2:0> \times POST2DIV < 2:0>}\right)$

Where:

$$\begin{split} M &= PLLFBDIV < 7:0 > \\ N1 &= PLLPRE < 3:0 > \\ N2 &= POST1DIV < 2:0 > \\ N3 &= POST2DIV < 2:0 > \end{split}$$

Note: The PLL Phase Detector Input Divider Select (PLLPREx) bits and the PLL Feedback Divider (PLLFBDIVx) bits should not be changed when operating in PLL mode. Therefore, the user must start in either a non-PLL mode or clock switch to a non-PLL mode (e.g., internal FRC Oscillator) to make any necessary changes and then clock switch to the desired PLL mode.

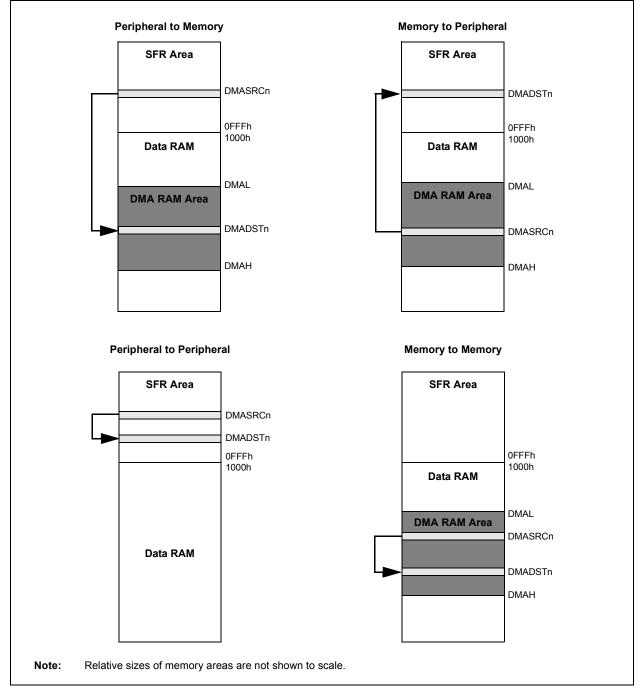
It is not permitted to directly clock switch from one PLL clock source to a different PLL clock source. The user would need to transition between PLL clock sources with a clock switch to a non-PLL clock source.

EXAMPLE 9-1: CODE EXAMPLE FOR USING PRIMARY PLL WITH 8 MHz INTERNAL FRC

```
//code example for 50 MIPS system clock using 8MHz FRC
// Select FRC on POR
#pragma config FNOSC = FRC
                                 // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config IESO = OFF
// Enable Clock Switching
#pragma config FCKSM = CSECMD
int
      main()
// Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
CLKDIVbits.PLLPRE = 1;
                               // N1=1
PLLFBDbits.PLLFBDIV = 125;
                                // M = 125
PLLDIVbits.POST1DIV = 5;
                                // N2=5
PLLDIVbits.POST2DIV = 1;
                                // N3=1
// Initiate Clock Switch to FRC with PLL (NOSC=0b001)
__builtin_write_OSCCONH(0x01);
 _builtin_write_OSCCONL(OSCCON | 0x01);
// Wait for Clock switch to occur
while (OSCCONbits.OSWEN!= 0);
```

9.5 Oscillator Configuration

The oscillator system has both Configuration registers and SFRs to configure, control and monitor the system. The FOSCSEL and FOSC Configuration registers (Register 30-4 and Register 30-5, respectively) are used for initial setup. Table 9-1 lists the configuration settings that select the device's oscillator source and operating mode at a Power-on Reset (POR).


TABLE 9-1:	CONFIGURATION BIT VALUES FOR CLOCK SELECTION
------------	--

Oscillator Source	Oscillator Mode	FNOSC<2:0> Value	POSCMD<1:0> Value	Notes
S0	Fast RC Oscillator (FRC)	000	xx	1
S1	Fast RC Oscillator with PLL (FRCPLL)	001	xx	1
S2	Primary Oscillator (EC)	010	00	1
S2	Primary Oscillator (XT)	010	01	
S2	Primary Oscillator (HS)	010	10	
S3	Primary Oscillator with PLL (ECPLL)	011	00	1
S3	Primary Oscillator with PLL (XTPLL)	011	01	
S3	Primary Oscillator with PLL (HSPLL)	011	10	
S4	Reserved	100	xx	
S5	Low-Power RC Oscillator (LPRC)	101	xx	1
S6	Backup FRC (BFRC)	110	xx	1
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	XX	1, 2

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

FIGURE 10-2: TYPES OF DMA DATA TRANSFERS

REGISTER 11-1: C1CONH: CAN CONTROL REGISTER HIGH (CONTINUED)

bit 4	TXQEN: Enable Transmit Queue bit ⁽¹⁾
	1 = Enables Transmit Message Queue (TXQ) and reserves space in RAM
	0 = Does not reserve space in RAM for TXQ
bit 3	STEF: Store in Transmit Event FIFO bit ⁽¹⁾
	1 = Saves transmitted messages in TEF
	0 = Does not save transmitted messages in TEF
bit 2	SERRLOM: Transition to Listen Only Mode on System Error bit ⁽¹⁾
	1 = Transitions to Listen Only mode
	0 = Transitions to Restricted Operation mode
bit 1	ESIGM: Transmit ESI in Gateway Mode bit ⁽¹⁾
	1 = ESI is transmitted as recessive when ESI of the message is high or CAN controller is error passive
	0 = ESI reflects error status of CAN controller
bit 0	RTXAT: Restrict Retransmission Attempts bit ⁽¹⁾
	1 = Restricted retransmission attempts, uses TXAT<1:0> bits (C1TXQCONH<6:5>)
	0 = Unlimited number of retransmission attempts, TXAT<1:0> bits will be ignored

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 12-20: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S)

	(X	- FWW GEN	ERAIOR #, y	– F, CL, FF (UK 3)					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
BPEN	BPSEL2 ⁽¹⁾	BPSEL1 ⁽¹⁾	BPSEL0 ⁽¹⁾		ACP2	ACP1	ACP0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SWPCI	SWPCIM1	SWPCIM0	LATMOD	TQPS	TQSS2	TQSS1	TQSS0			
bit 7							bit C			
Legend:										
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	BPEN: PCI	Bypass Enable	e bit							
						erator will be cor	ntrolled by PC			
			Senerator select	ed by the BPS	EL<2:0> bits					
bit 14-12		ction is not byp	Source Selecti	on hito(1)						
DIL 14-12					Llogic when BPI	EN = 1				
	111 = PCI control is sourced from PWM Generator 8 PCI logic when BPEN = 1 110 = PCI control is sourced from PWM Generator 7 PCI logic when BPEN = 1									
	101 = PCI control is sourced from PWM Generator 6 PCI logic when BPEN = 1									
	100 = PCI control is sourced from PWM Generator 5 PCI logic when BPEN = 1									
	011 = PCI control is sourced from PWM Generator 4 PCI logic when BPEN = 1									
	010 = PCI control is sourced from PWM Generator 3 PCI logic when BPEN = 1 001 = PCI control is sourced from PWM Generator 2 PCI logic when BPEN = 1									
					I logic when BPI					
bit 11	Unimpleme	nted: Read as	·'O'							
bit 10-8	ACP<2:0>:	PCI Acceptance	e Criteria Seleo	ction bits						
	111 = Rese									
	110 = Rese									
		101 = Latched any edge 100 = Latched rising edge								
	011 = Latch	•••								
	010 = Any e									
		001 = Rising edge								
bit 7	000 = Level	tware PCI Con	tral bit							
				v the SMPCIM	<1:0> control bit	te				
	 1 = Drives a '1' to PCI logic assigned to by the SWPCIM<1:0> control bits 0 = Drives a '0' to PCI logic assigned to by the SWPCIM<1:0> control bits 									
bit 6-5		-	PCI Control Mo	-						
	11 = Reserv	/ed								
			d to termination							
			d to acceptance							
hit 1		-	d to PCI accept lodo bit	ance logic						
bit 4		PCI SR Latch M	iode bit iinant in Latche	d Accentance r	nodes					
			ant in Latched A							
					-					
NIGTO 11	Solooto '0' if o		Concrator in not	t propont						

Note 1: Selects '0' if selected PWM Generator is not present.

NOTES:

13.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33CK256MP508 devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters. The devices implement the ADC with three SAR cores, two dedicated and one shared.

13.1 ADC Features Overview

The High-Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Three ADC Cores: Two Dedicated Cores and One Shared (common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.5 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 24 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels

- Simultaneous Sampling of up to 3 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM triggers from CPU cores
 - MCCP/SCCP modules triggers
 - CLC modules triggers
 - External pin trigger event (ADTRG31)
 - Software trigger
- Four Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Four Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input

The module consists of three independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 13-1 and Figure 13-2.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the Measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

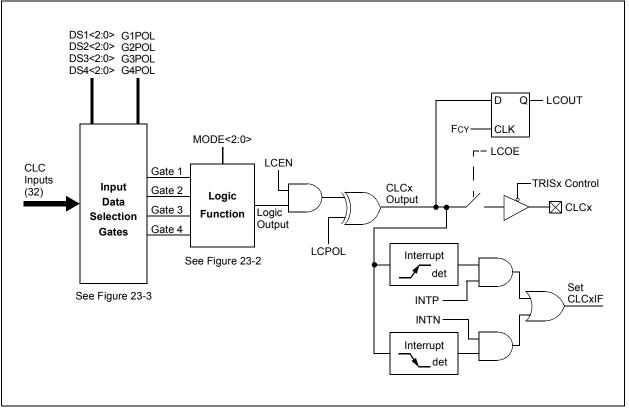
The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

REGISTER 15-4: QEIxSTAT: QEIx STATUS REGISTER (CONTINUED)

- bit 2 **HOMIEN:** Home Input Event Interrupt Enable bit
 - 1 = Interrupt is enabled0 = Interrupt is disabled
- bit 1 **IDXIRQ:** Status Flag for Index Event Status bit
 - 1 = Index event has occurred
 - 0 = No Index event has occurred
- bit 0 IDXIEN: Index Input Event Interrupt Enable bit
 - 1 = Interrupt is enabled
 - 0 = Interrupt is disabled
- Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 19-12: PMRADDR: PARALLEL MASTER PORT READ ADDRESS REGISTER⁽²⁾

R/W-0 RCS2 ⁽¹⁾	R/W-0		B A A A A	B 4 4 4 6	B 8 8 4 6		B 8 4 4 6	
RCS2(")	(1)	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
(4)	RCS1 ⁽¹⁾	-		RADD	R<13:8>			
RADDR15 ⁽¹⁾	RADDR14 ⁽¹⁾			10.00				
bit 15							bit 8	
						DAMA	DAMO	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RADD	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unkr	x = Bit is unknown	
bit 15	RCS2: Chip S	Select 2 bit ⁽¹⁾						
	1 = Chip Sele							
	0 = Chip Sele	ect 2 is inactive	(RADDR15 f	unction is selec	cted)			
bit 15	RADDR15: Ta	arget Read Add	dress bit 15 ⁽¹⁾					
bit 14	RCS1: Chip S	Select 1 bit ⁽¹⁾						
	1 = Chip Sele	ect 1 is active						
	0 = Chip Sele	ect 1 is inactive	(RADDR14 f	unction is seled	cted)			
bit 14	RADDR14: Ta	arget Read Add	dress bit 14 ⁽¹⁾					
		>: Target Read	Addroce bite					


2: This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1'.

23.0 CONFIGURABLE LOGIC CELL (CLC)

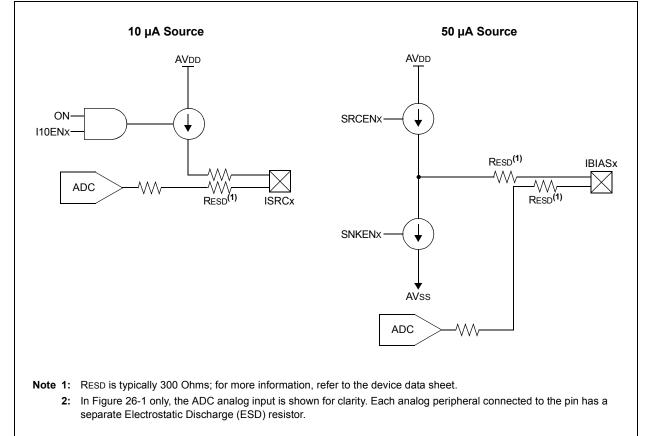
Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (DS70005298) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 23-1 shows an overview of the module.

Figure 23-3 shows the details of the data source multiplexers and Figure 23-2 shows the logic input gate connections.

FIGURE 23-1: CLCx MODULE

26.0 CURRENT BIAS GENERATOR (CBG)


- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (DS70005253) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Current Bias Generator (CBG) consists of two classes of current sources: 10 μ A and 50 μ A sources. The major features of each current source are:

- 10 µA Current Sources:
 - Current sourcing only
 - Up to four independent sources
- 50 µA Current Sources:
 - Selectable current sourcing or sinking
 - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 26-1.

REGISTER 30-1: FSEC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1				
 bit 23		_		_		_	 bit 16				
511 25							DIL TO				
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1				
AIVTDIS	_		—	CSS2	CSS1	CSS0	CWRP				
bit 15											
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1				
GSS1	GSS0	GWRP	—	BSEN	BSS1	BSS0	BWRP				
bit 7							bit 0				
Legend:		PO = Program	n Onco hit								
R = Readabl	la hit	W = Writable		II – Unimplon	nonted hit read	d oo 'O'					
				•	nented bit, read						
-n = Value at	IPOR	'1' = Bit is set		'0' = Bit is clea	areo	x = Bit is unkr	lown				
bit 23-16	Unimplemer	nted: Read as ':	ı,								
bit 15	-			Disable bit							
		AIVTDIS: Alternate Interrupt Vector Table Disable bit 1 = Disables AIVT									
	0 = Enables AIVT										
bit 14-12	Unimplemented: Read as '1'										
bit 11-9		Configuration Se	-		n Level bits						
	111 = No protection (other than CWRP write protection)										
	110 = Standard security 10x = Enhanced security										
	0xx = High s	•									
bit 8	CWRP: Conf	iguration Segm	ent Write-Prot	ect bit							
		ation Segment ation Segment									
bit 7-6	•	General Segmer	•		el bits						
		ection (other that									
	10 = Standard security										
	0x = High security										
bit 5	GWRP: General Segment Write-Protect bit										
		gram memory i gram memory i									
bit 4		ted: Read as ':									
bit 3	BSEN: Boot	Segment Contr	ol bit								
	1 = No Boot	Segment									
		gment size is de	-								
bit 2-1		Boot Segment C			its						
	11 = No prot 10 = Standar	ection (other tha	an BWRP write	e protection)							
	0x = High se	•									
bit 0	-	Segment Write	-Protect bit								
	1 = User pro	gram memory i	s not write-pro								
	0 = User pro	gram memory i	s write-protect	ed							

Legend:		PO = Prograr	n Once bit					
bit 7							bit 0	
			BSLI	vl<7:0>				
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
bit 15							bit 8	
	—	—	BSLIM<12:8>					
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
bit 23							bit 16	
_	_	_	_	_	—	—	_	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	

REGISTER 30-2: FBSLIM CONFIGURATION REGISTER

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-13 Unimplemented: Read as '1'

bit 12-0 BSLIM<12:0>: Boot Segment Code Flash Page Address Limit bits

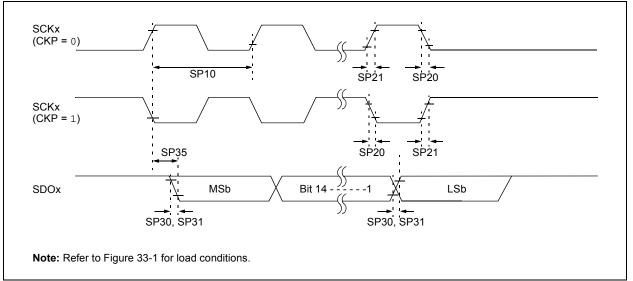
Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size.

REGISTER 30-3: FSIGN CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	—	—	—	—	—	—	
bit 23							bit 16	
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—		—	—	—	—	
bit 15							bit 8	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
	—	—		—	—	—	—	
bit 7							bit 0	
Legend:		r = Reserved	bit	PO = Program Once bit				
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 23-16 Unimplemented: Read as '1'								
bit 15	it 15 Reserved: Maintain as '0'							
bit 14-0	bit 14-0 Unimplemented: Read as '1'							

Base Instr # Assembly Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
69	NEG	NEG Acc		Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = $f + 1$	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
70	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
71	NORM	NORM	Acc, Wd	Normalize Accumulator	1	1	N,OV,Z
72	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
73	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
74	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
75	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
76	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
77	RESET	RESET		Software Device Reset	1	1	None
78	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA
79	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
80	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
81	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
82	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
83	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
84	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
85	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
86	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
87	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
88	SFTAC	SETM SFTAC	Ws Acc,Wn	Ws = 0xFFFF Arithmetic Shift Accumulator by (Wn)	1	1	None OA,OB,OAB,
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	SA,SB,SAB OA,OB,OAB,

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)


Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

SPI Master Transmit Only (Half- Duplex)	SPI Master Transmit/Receive (Full-Duplex)	SPI Slave Transmit/Receive (Full-Duplex)	CKE
Figure 33-7 Table 33-28	_	_	0
Figure 33-8 Table 33-28	_	_	1
_	Figure 33-9 Table 33-29	—	0
_	Figure 33-10 Table 33-30		1
_	—	Figure 33-11 Table 33-32	0
_	_	Figure 33-12 Table 33-33	1

TABLE 33-27: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 33-7: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 33-36: ADC MODULE SPECIFICATIONS
--

		DC MODULE SPECIFI					
	ng Conditions temperat	ons: 3.0V to 3.6V (unless ure $-40^{\circ}C \le TA \le +85^{\circ}C$ $-40^{\circ}C \le TA \le +125^{\circ}C$	for Industrial				
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
			Analog	g Input			
AD12	VINH-VINL	Full-Scale Input Span	AVss	_	AVdd	V	
AD14	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	100	_	Ω	For minimum sampling time (Note 1)
AD66	Vbg	Internal Voltage Reference Source	_	1.2	—	V	
			ADC Ac	curacy			
AD20c	Nr	Resolution	1	2 data bits		bits	
AD21c	INL	Integral Nonlinearity	> -11.3	—	< 11.3	LSb	AVss = 0V, AVDD = 3.3V
AD22c	DNL	Differential Nonlinearity	> -1.5	—	< 11.5	LSb	AVss = 0V, AVDD = 3.3V
AD23c	Gerr	Gain Error	> -12	—	< 12	LSb	AVss = 0V, AVDD = 3.3V
AD24c	EOFF	Offset Error	> -7.5	—	< 7.5	LSb	AVss = 0V, AVDD = 3.3V
			Dynamic Pe	erformanc	e		
AD31b	SINAD	Signal-to-Noise and Distortion	56	—	70	dB	(Notes 2, 3)
AD34b	ENOB	Effective Number of Bits	9.0		11.4	bits	(Notes 2, 3)
AD50	Tad	ADC Clock Period	14.3	_	—	ns	
AD51	Ftp	Throughput Rate		_	3.5	Msps	Dedicated Cores 0 and 1
					3.5	Msps	Shared core

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized but not tested in manufacturing.

3: Characterized with a 1 kHz sine wave.

4: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.