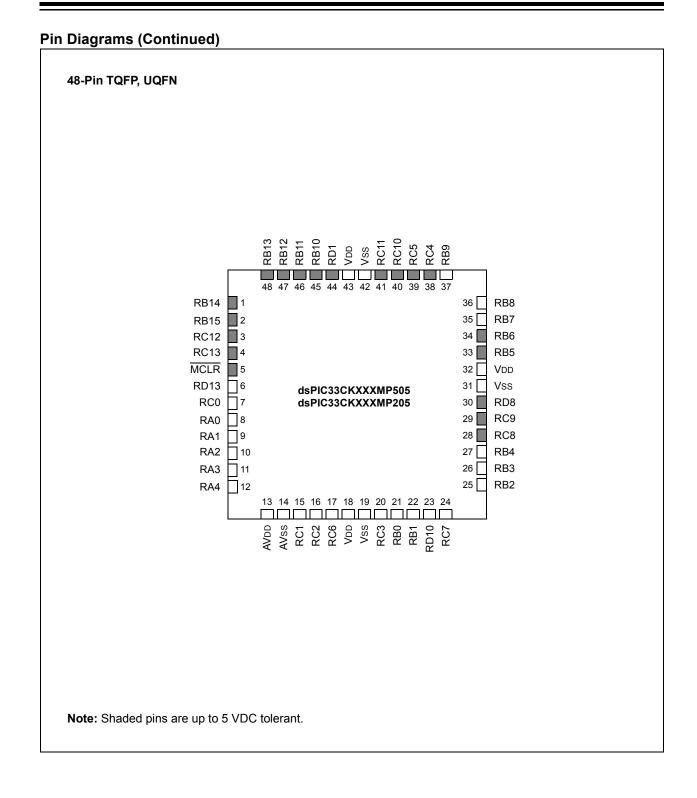


Welcome to E-XFL.COM

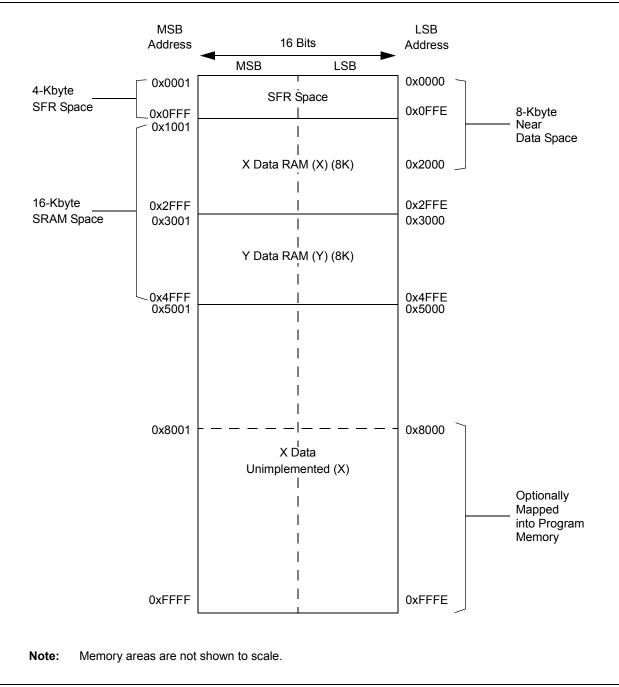
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

 $= \cdot \times =$


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck128mp505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CK256MP508 FAMILY

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33CK128MPX0X DEVICES

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	Y<7:0>			
bit 7							bit 0
l egend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	ented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-0 **NVMSRCADR<15:0>:** NVM Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	00	<u> </u>	50		50		50
		—			—	—	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	—	—	ECCDBE	SGHT
bit 7							bit
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

bit 15-2 Unimplemented: Read as '0'

1 = ECC double-bit error trap has occurred

0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

REGISTER 8-6: CNPUX: CHANGE NOTIFICATION PULL-UP ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPL	Jx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNP	Jx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 CNPUx<15:0>: Change Notification Pull-up Enable for PORTx bits

1 = The pull-up for PORTx[n] is enabled – takes precedence over the pull-down selection

0 = The pull-up for PORTx[n] is disabled

REGISTER 8-7: CNPDx: CHANGE NOTIFICATION PULL-DOWN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNPDx<15:8>							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNPDx<7:0>							
bit 7						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CNPDx<15:0>: Change Notification Pull-Down Enable for PORTx bits

1 = The pull-down for PORTx[n] is enabled (if the pull-up for PORTx[n] is not enabled)

0 = The pull-down for PORTx[n] is disabled

8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK256MP508 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

TABLE 8-8: PORTA REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	_	—	—	—	—	—	—	—	—	—	—	ANSELA<4:0>				
TRISA	_	_	_	_	—	—	—	_	—	—	—			TRISA<4:0>		
PORTA	_	_	_	_	—	—	—	_	_	—	—			RA<4:0>		
LATA	_	—	—	—	—	_	_	_	_	_	_			LATA<4:0>		
ODCA	_	—	—	—	—	_	_	_	_	_	_			ODCA<4:0>		
CNPUA	_	_	_	_	—	—	—	_	_	—	—		(CNPUA<4:0	>	
CNPDA	_	—	—	—	—	_	_	_	_	_	_		(CNPDA<4:0	>	
CNCONA	ON	—	—	—	CNSTYLE	_	_	_	_	_	_	_	_	—	_	—
CNEN0A		_	_	_	_	_	—	—	—				C	NEN0A<4:0	>	
CNSTATA	_	—	—	—	—	—	—	—	—	_	_	CNSTATA<4:0>				
CNEN1A		—	_	_	_	—	—	_	—			CNEN1A<4:0>				
CNFA		_	_	_	_	_	_	_	_					CNFA<4:0>		

TABLE 8-9: PORTB REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELB		—	—	_	-	—	A	NSELB<9:	7>	—	—	ANSELB<4:0>				
TRISB	TRISB<15:0>															
PORTB							F	RS<15:0>								
LATB							LA	ATB<15:0>								
ODCB							O	DCB<15:0>	>							
CNPUB							CN	PUB<15:0	>							
CNPDB							CN	PDB<15:0	>							
CNCONB	ON	—	—	-	CNSTYLE	_	—	_	_	_	—	_	_	_	_	_
CNEN0B							CN	EN0<15:0	>							
CNSTATB							CNS	TATB<15:	0>							
CNEN1B							CNE	EN1B<15:0)>							
CNFB	CNFB<15:0>															

12.3 Control Registers

There are two categories of Special Function Registers (SFRs) used to control the operation of the PWM module:

- Common, shared by all PWM Generators
- PWM Generator-specific

An 'x' in the register name denotes an instance of a PWM Generator.

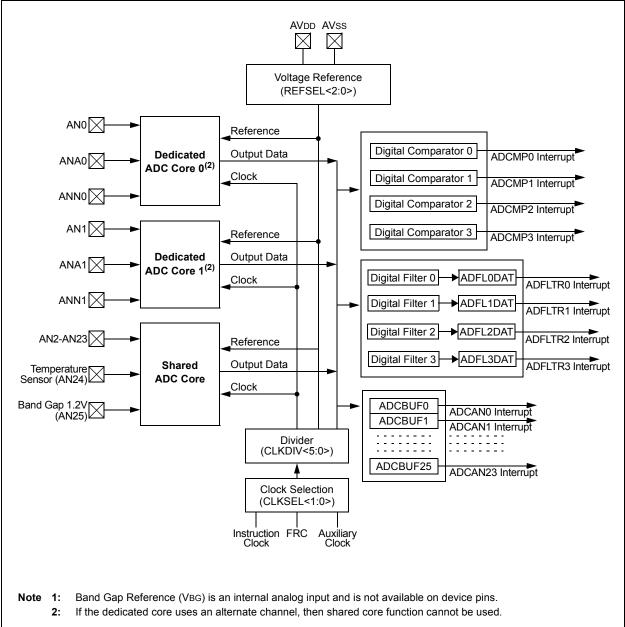
A 'y' in the register name denotes an instance of the common function.

REGISTER 12-1: PCLKCON: PWM CLOCK CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
HRRDY	HRERR	—	_	_	_	—	LOCK ⁽¹⁾
bit 15							bit 8
		DAALO	DAA/O				DAVA
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0 MCLKSEL1 ⁽²⁾	R/W-0 MCLKSEL0 ⁽²⁾
	_	DIVSEL1	DIVSEL0	—	—	MCLKSEL	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, I	read as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
bit 15	HRRDY: Higl	h-Resolution Re	eady bit				
	0	resolution circ					
	•	n-resolution circ		ady			
bit 14	•	h-Resolution E					
		has occurred; has occurred;				en HRRDY = 1	
bit 13-9		nted: Read as '					
bit 8	LOCK: Lock	bit ⁽¹⁾					
	•	otected register otected register					
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-4	DIVSEL<1:0	>: PWM Clock	Divider Select	ion bits			
	11 = Divide r						
	10 = Divide r						
	01 = Divide r 00 = Divide r						
bit 3-2		nted: Read as '	0'				
bit 1-0	MCLKSEL<1	I:0>: PWM Mas	ster Clock Sel	ection bits ⁽²⁾			
		– Auxiliary PLL					
		Primary PLL p		tput			
	01 = AFVCO/2 00 = Fosc	2 – Auxiliary V(5012				
Note 1: A	device-specific ι	unlock sequenc	e must be per	tormed before	this bit can	be cleared.	

2: Changing the MCLKSEL<1:0> bits while ON (PGxCONL<15>) = 1 is not recommended.

R/W-0) r-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ON	_		_	_	TRGCNT2	TRGCNT1	TRGCNT0
bit 15							bit 8
			DANO	DAALO	DAMA	D 444 0	DAVA
R/W-0		U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HREN	—	_	CLKSEL1	CLKSEL0	MODSEL2	MODSEL1	MODSEL0
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown
bit 15	ON: Enable b	bit enerator is ena	blod				
	_	enerator is not					
bit 14	Reserved: M	/aintain as '0'					
bit 13-11	Unimplemer	nted: Read as	'0'				
bit 10-8	-	0>: Trigger Co					
bit 7	100 = PWM 011 = PWM 010 = PWM 001 = PWM 000 = PWM HREN: PWM	Generator pro Generator pro Generator pro Generator pro Generator pro Generator pro	duces 5 PWM duces 4 PWM duces 3 PWM duces 2 PWM duces 1 PWM ligh-Resolution	cycles after tri cycles after tri cycles after tri cycles after tri cycle after trig n Enable bit	ggered ggered ggered ggered gered		
		enerator x oper enerator x oper	•		le		
bit 6-5	Unimplemer	nted: Read as	'0'				
bit 4-3	CLKSEL<1:0	0>: Clock Sele	ction bits				
	10 = PWM G 01 = PWM G	Generator uses Generator uses l	Master clock c Master clock se	livided by cloc lected by the N	uency scaling cir k divider circuit ^{(:} //CLKSEL<1:0> (wer state (defau	1) (PCLKCON<1:(0>) control bits
bit 2-0	MODSEL<2:	:0>: Mode Sele	ection bits				
	110 = Dual E 101 = Doubl 100 = Cente 011 = Reser 010 = Indepe 001 = Variab	Edge Center-Al e-Update Cent er-Aligned PWN	ligned PWM m er-Aligned PW 1 mode WM mode, dua 1 mode	ode (interrupt/ M mode	register update register update		
Note 1:	The PWM Genera duty cycle and per		•		scaling circuit cl	ock, effectively	scaling the


REGISTER 12-12: PGxCONL: PWM GENERATOR x CONTROL REGISTER LOW

REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S)

	•			-1, 02, 11	,		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSYNCDIS	TERM2	TERM1	TERM0	AQPS	AQSS2	AQSS1	AQSS0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWTERM	PSYNC	PPS	PSS4	PSS3	PSS2	PSS1	PSS0
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read a	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15			ynchronization				
	0 = Termina	tion of latched	PCI occurs at	PWM EOC			
bit 14-12	TERM<2:0>	: Termination I	Event Selection	bits			
	00000	ts PCI Source					
		ts PCI Source		orator output s	elected by the PV		-)
		RIGC trigger e				VIVIF CI~2.02 Dia	>)
		RIGB trigger e					
		RIGA trigger e					
					sitions from active the SWTERM bit I		
bit 11			er Polarity Sele			ocation	
Dit 11	1 = Inverted 0 = Not inve		er i olanty Sele				
bit 10-8	AQSS<2:0>	: Acceptance	Qualifier Source	e Selection bits			
		-	nly (qualifier fo				
		ts PCI Source					
		ts PCI Source		orator output of	plaated by the DV	WMDC1-2.05 hite	
		Generator is f			elected by the PV		>)
	010 = LEB is		inggoroa				
				enerator signal)			
				ualifier forced to	oʻ1')		
bit 7		CI Software T					
			•	a termination ev	ent. This bit loca	tion always read	Is as ' 0'.
bit 6		-	ion Control bit				
			nized to PWM chronized to PV				
bit 5	PPS: PCI Pc	plarity Select b	it				
	1 = Inverted						
	0 = Not inve						

dsPIC33CK256MP508 FAMILY

15.1 QEI Control and Status Registers

REGISTER 15-1: QEIxCON: QEIx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIEN	I —	QEISIDL	PIMOD2 ^(1,5)	PIMOD1 ^(1,5)	PIMOD0 ^(1,5)	IMV1 ⁽²⁾	IMV0 ⁽²⁾		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0		
bit 7							bit 0		
Legend:									
R = Read		W = Writable		•	nented bit, read				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15			r Interface Mod	ule Enable bit					
		 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written 							
bit 14		ted: Read as '	,						
bit 13	•	I Stop in Idle M							
		-	eration when de	evice enters Id	le mode				
			ation in Idle mod						
bit 12-10	PIMOD<2:0>:	Position Cour	nter Initialization	n Mode Select	bits ^(1,5)				
	110 = Modulo 101 = Resets 100 = Second 011 = First In 010 = Next In 001 = Every I	Count mode the position co d Index event a dex event afte adex input even Index input even	for position cou for position cou ounter when the fter Home even r Home event in the initializes the part resets the p son affect the	nter e position coun t initializes pos nitializes positio position counter osition counter	iter equals the ition counter wi on counter with er with contents	QEIxGEC regis th contents of C contents of QE	ster QEIxIC register EIxIC register		
bit 9-8	IMV<1:0>: Inc	dex Match Valu	ie bits ⁽²⁾						
	10 = Index ma 01 = Index ma 00 = Index ma	IMV<1:0>: Index Match Value bits ⁽²⁾ 11 = Index match occurs when QEBx = 1 and QEAx = 1 10 = Index match occurs when QEBx = 1 and QEAx = 0 01 = Index match occurs when QEBx = 0 and QEAx = 1 00 = Index match occurs when QEBx = 0 and QEAx = 0							
bit 7	Unimplemen	ted: Read as '	0'						
Note 1:	When CCMx = 10 ignored.) or CCMx = 1	1, all of the QE	counters oper	ate as timers a	nd the PIMOD	<2:0> bits are		
2:	When CCMx = 00 POSxCNTL regist		nd QEBx values	s match the Ind	lex Match Value	e (IMV), the PC	SxCNTH and		
3:	The selected cloc	k rate should b	e at least twice	the expected	maximum quad	drature count ra	ate.		
-									

- **4:** Not all devices support this mode.
- **5:** The QCAPEN and HCAPEN bits must be cleared during PIMODx Modes 2 through 7 to ensure proper functionality. Not all devices support HCAPEN.

IADLE 10-2. I		
Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 0000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	x	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

TABLE 18-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 19-7: PMDIN1: PARALLEL MASTER PORT DATA INPUT/OUTPUT LOW REGISTER

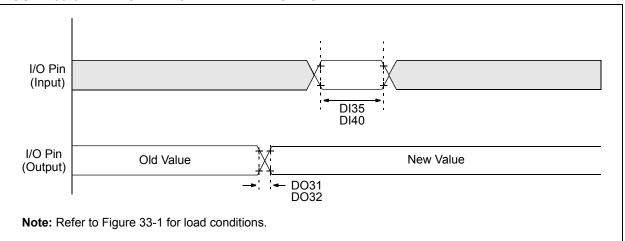
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	IN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	AIN<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **DATAIN<15:0>:** Input/Output Data Port bits These bits are for 8-bit or 16-bit read/write operations in Master mode and are the input data port for 8-bit write operations in Slave mode.

REGISTER 19-8: PMDIN2: PARALLEL MASTER PORT DATA INPUT/OUTPUT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

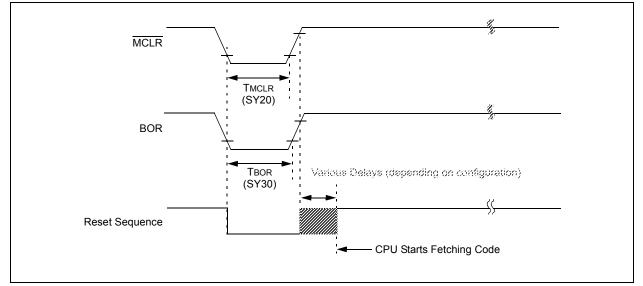
bit 15-0 DATAIN<31:16>: Input/Output Data Port bits


These bits are for 8-bit write operations in Slave mode.

25.1 Control Registers

REGISTER 25-1: CRCCONL: CRC CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15	·				•	•	bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	R/W-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	MOD	—	—
bit 7							bit (
Logondi			Clearable bit	HCC - Hordu	are Settable/C	laarahla hit	
Legend:	la hit	HC = Hardware					
R = Readab		W = Writable bi	IL	•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15		RC Enable bit					
	1 = Enables						
	0 = Disable						
bit 14	Unimpleme	nted: Read as '	0'				
bit 13	CSIDL: CRO	C Stop in Idle Mo	ode bit				
	1 = Disconti	nues module op	eration when de	evice enters Idle	e mode		
	0 = Continu	es module opera		le			
bit 12-8	VWORD<4:	es module opera 0>: Pointer Valu	ition in Idle mod e bits				
bit 12-8	VWORD<4: Indicates the	es module opera	ition in Idle mod e bits		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 12-8 bit 7	VWORD<4: Indicates the 16 when PL	es module opera 0>: Pointer Valu e number of vali	ition in Idle mod e bits d words in the I		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
	VWORD<4: Indicates the 16 when PL	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bin full	ition in Idle mod e bits d words in the I		aximum value o	of 8 when PLE	N<4:0> ≥ 7 oi
	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bin full	ition in Idle mod e bits d words in the I t		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 7	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> ≤ 7. :RC FIFO Full bir full not full :RC FIFO Empty empty	ition in Idle mod e bits d words in the I t		aximum value (of 8 when PLE	N<4:0> ≥ 7 o
bit 7	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> ≤ 7. :RC FIFO Full bir full not full :RC FIFO Empty empty	ition in Idle mod e bits d words in the I t y bit		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 7 bit 6	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrupt	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrupt	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. CRC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty t on shift is comp	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty t on shift is comp RC Start bit RC serial shifter	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor olete and results	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty CRC Start bit	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor olete and results ed off	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rd is shifted into	ation in Idle mod e bits d words in the I t bit election bit election bit oty; the final wor lete and results ed off on Select bit the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4 bit 3	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo 0 = Data wo	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rid is shifted into	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo 0 = Data wo	es module opera 0>: Pointer Valu e number of valu $EN<4:0> \le 7$. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty CRC Interrupt Set t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rid is shifted into Calculation Mod	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4 bit 3	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: I 1 = Data wo 0 = Data wo MOD: CRC	es module opera 0>: Pointer Valu e number of valu $EN<4:0> \le 7$. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction ord is shifted into Calculation Mod e mode	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 c


TABLE 33-24: I/O TIMING REQUIREMENTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.SymbolCharacteristicMin.Typ.(1)Max.UnitsConditions								
DO31	TIOR	Port Output Rise Time ⁽²⁾		6.5	9.7	ns		
DO32	TIOF	Port Output Fall Time ⁽²⁾	_	3.2	4.2	ns		
DI35 TINP INTx Pin High or Low Time (input) 20 — — ns								
DI40 TRBP CNx High or Low Time (input) 2 — — Tcy								

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

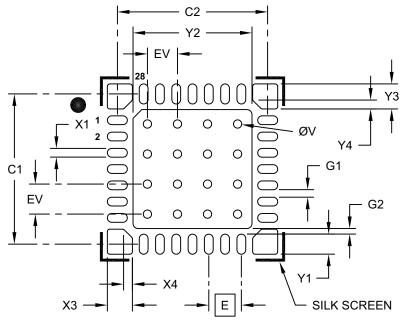

2: This parameter is characterized but not tested in manufacturing.

FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

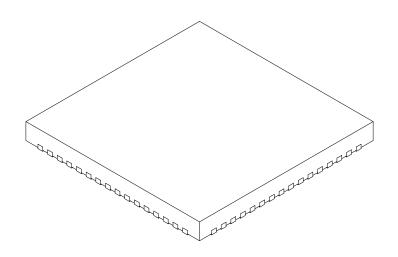
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	64		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support