

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33CK256MP508 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.0 "Interrupt Controller"**.

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

REGISTER 8-2: TRISX: OUTPUT ENABLE FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	Sx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown

bit 15-0 **TRISx<15:0>:** Output Enable for PORTx bits 1 = LATx[n] is not driven on the PORTx[n] pin

0 = LATx[n] is driven on the PORTx[n] pin

REGISTER 8-3: PORTX: INPUT DATA FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	x<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

Function	RPnR<5:0>	Output Name
MCCP9A	110010	RPn tied to MCCP9 Output A
MCCP9B	110011	RPn tied to MCCP9 Output B
MCCP9C	110100	RPn tied to MCCP9 Output C
MCCP9D	110101	RPn tied to MCCP9 Output D
MCCP9E	110110	RPn tied to MCCP9 Output E
MCCP9F	110111	RPn tied to MCCP9 Output F
CLC3OUT	111011	RPn tied to CLC4 Output
CLC4OUT	111100	RPn tied to CLC4 Output
U1DTR	111101	RPn tied to UART1 DTR
U2DTR	111110	RPn tied to UART2 DTR
U3DTR	111111	RPn tied to UART3 DTR

TABLE 8-7: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 8-7 for peripheral function numbers)

(see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

RP41R<5:0>: Peripheral Output Function is Assigned to RP41 Output Pin bits

RP40R<5:0>: Peripheral Output Function is Assigned to RP40 Output Pin bits

RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

REGISTER 8-58: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 8-7 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

REGISTER 8-59:

REGISTER 11-37: C1TEFSTA: CAN TRANSMIT EVENT FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8

U-0	U-0	U-0	U-0	S/HC-0	R-0	R-0	R-0
—	—	—	—	TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	S = Settable bit Can Set by	· ' 1 '
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
TEFOVIF: Transmit Event FIFO Overflow Interrupt Flag bit
1 = Overflow event has occurred0 = No overflow event has occurred
TEFFIF: Transmit Event FIFO Full Interrupt Flag bit ⁽¹⁾
1 = FIFO is full 0 = FIFO is not full
TEFHIF: Transmit Event FIFO Half Full Interrupt Flag bit ⁽¹⁾ 1 = FIFO is \geq half full 0 = FIFO is < half full
TEFNEIF: Transmit Event FIFO Not Empty Interrupt Flag bit ⁽¹⁾ 1 = FIFO is not empty 0 = FIFO is empty

Note 1: These bits are read-only and reflect the status of the FIFO.

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxC/	AP<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxCA	\P<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'			d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

REGISTER 12-32: PGxCAP: PWM GENERATOR x CAPTURE REGISTER

bit 15-0 **PGxCAP<15:0>:** PGx Time Base Capture bits⁽¹⁾

Note 1: PGxCAP<1:0> will read as '0' in Standard Resolution mode. PGxCAP<4:0> will read as '0' in High-Resolution mode.

13.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33CK256MP508 devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters. The devices implement the ADC with three SAR cores, two dedicated and one shared.

13.1 ADC Features Overview

The High-Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Three ADC Cores: Two Dedicated Cores and One Shared (common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.5 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 24 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels

- Simultaneous Sampling of up to 3 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM triggers from CPU cores
 - MCCP/SCCP modules triggers
 - CLC modules triggers
 - External pin trigger event (ADTRG31)
 - Software trigger
- Four Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Four Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input

The module consists of three independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 13-1 and Figure 13-2.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the Measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

REGISTER 13-2:	ADCON1H: ADC CONTROL	REGISTER 1 HIGH
----------------	----------------------	------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
FORM	SHRRES1	SHRRES0	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

hit 15_8	Inimplemented: Read as '0'
bit 15-0	ommplementeu. Reau as 0
bit 7	FORM: Fractional Data Output Format bit
	1 = Fractional
	0 = Integer
bit 6-5	SHRRES<1:0>: Shared ADC Core Resolution Selection bits
	11 = 12-bit resolution
	10 = 10-bit resolution
	01 = 8-bit resolution
	00 = 6-bit resolution
bit 4-0	Unimplemented: Read as '0'

REGISTER 14-5: DACxCONL: DACx CONTROL LOW REGISTER (CONTINUED)

bit 10	CBE: Comparator Blank Enable bit 1 = Enables the analog comparator output to be blanked (gated off) during the recovery transition
	following the completion of a slope operation 0 = Disables the blanking signal to the analog comparator; therefore, the analog comparator output is
	always active
bit 9	DACOEN: DACx Output Buffer Enable bit
	 1 = DACx analog voltage is connected to the DACOUT1 pin 0 = DACx analog voltage is not connected to the DACOUT1 pin
bit 8	FLTREN: Comparator Digital Filter Enable bit
	1 = Digital filter is enabled 0 = Digital filter is disabled
bit 7	CMPSTAT: Comparator Status bits
	The current state of the comparator output including the CMPPOL selection.
bit 6	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 5-3	INSEL<2:0>: Comparator Input Source Select bits
	111 = Reserved
	110 = Reserved
	101 = Reserved
	011 = CMPxD input pin
	010 = CMPxC input pin
	001 = CMPxB input pin
	000 = CMPxA input pin
bit 2	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 1-0	HYSSEL<1:0>: Comparator Hysteresis Select bits
	11 = 45 mv hysteresis
	10 = 30 mv hysteresis
	01 = 15 mv hysteresis
	00 = No hysteresis is selected
Note 1:	Changing these bits during operation may generate a spurious interrupt.
2:	The edge selection is a post-polarity selection via the CMPPOL bit.

15.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (DS70000601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK256MP508 family implements 2 instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 15-1 illustrates the Quadrature Encoder Interface signals.

The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 15-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.

FIGURE 15-1: QUADRATURE ENCODER INTERFACE SIGNALS

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note 1:	This data sheet summarizes the features
	of the dsPIC33CK256MP508 family of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	"Serial Peripheral Interface (SPI) with
	Audio Codec Support" (DS70005136) in
	the "dsPIC33/PIC24 Family Reference
	Manual", which is available from the
	Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the dsPIC33CK256MP508 family include three SPI modules. On 48, 64 and 80-pin devices, SPI instance SPI2 can work up to 50 MHz speed when selected as a non-PPS pin. The selection is done using the SPI2PIN bit (FDEVOPT<13>). If the bit for SPI2PIN is '1', the PPS pin will be used. When SPI2PIN is '0', the SPI signals are routed to dedicated pins.

The module supports operation in two Buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Note: FIFO depth for this device is 4 (in 8-Bit Data mode).

Variable length data can be transmitted and received, from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- Left Justified mode
- Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Slaves. Because the audio protocols require free-running clocks, the Master can be a third-party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

dsPIC33CK256MP508 FAMILY

FIGURE 17-3: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)

2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.

20.2 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATL/H registers. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data registers before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME < 15:0 > = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 > \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x Prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,
	the value written to SYNCMIN<15:0>
	must be less than the value written to SYNCMAX<15:0>.

20.2.1 RECEIVE MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATL/H registers after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

REGISTER 20-3: SENTxDATL: SENTx RECEIVE DATA REGISTER LOW⁽¹⁾

R/W-0 R/W-0 <th< th=""><th>D M M A</th><th>D 444 A</th><th>5444.0</th><th>544/ 0</th><th>D 444 0</th><th>DANO</th><th>5444</th><th>D444.0</th></th<>	D M M A	D 444 A	5444.0	544/ 0	D 444 0	DANO	5444	D 444.0
R/W-0 R/W-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
R/W-0 R/W-0 <th< td=""><td>bit 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 8</td></th<>	bit 15							bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	DATA4<3:0>				DATA5	5<3:0>		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA6<3:0>				CRC	<3:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 20-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	STAT	<3:0>			DATA	1<3:0>		
bit 15				·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA	2<3:0>		DATA3<3:0>				
bit 7			·			bit 0		
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 DATA1<3:0>: Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

dsPIC33CK256MP508 FAMILY

REGISTER 22-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			DT<	5:0>		
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits

111111 = Inserts 63 dead-time delay periods between complementary output signals
111110 = Inserts 62 dead-time delay periods between complementary output signals
000010 = Inserts 2 dead-time delay periods between complementary output signals
000001 = Inserts 1 dead-time delay period between complementary output signals

000000 = Dead-time logic is disabled

Note 1: This register is implemented in the MCCP9 module only.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—	—	T1MD	QEI1MD	PWMMD	—
bit 15	•				I		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADC1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable t	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplement	ted: Read as '0	, 				
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = 1 imer 1 mo 0 = Timer 1 mo	odule is disable odule is enable	a d				
bit 10	QEI1MD: QEI	1 Module Disat	∽ ole bit				
	$1 = QEI1 \mod$	lule is disabled					
	0 = QEI1 mod	lule is enabled					
bit 9	PWMMD: PW	/M Module Disa	ble bit				
	1 = PWM mod	dule is disabled					
h it 0		dule is enabled	,				
DIL 8		ted: Read as u	la hit				
DIL 7	$1 = 12C1 \mod 1$						
	$0 = 12C1 \mod 0$	ule is enabled					
bit 6	U2MD: UART	2 Module Disat	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	d				
bit 5	U1MD: UART	1 Module Disat	ole bit				
	1 = UART1 m	odule is disable	ed d				
hit 4		2 Module Disab	u le hit				
	$1 = SPI2 \mod 1$	ule is disabled					
	$0 = SPI2 \mod$	lule is enabled					
bit 3	SPI1MD: SPI	1 Module Disab	le bit				
	1 = SPI1 mod	lule is disabled					
	0 = SPI1 mod	lule is enabled					
bit 2	Unimplement	ted: Read as '0	,				
bit 1	C1MD: CAN1	Module Disabl	e bit				
	$\perp = CANT MO$ 0 = CANT MO	dule is disabled	I				
bit 0	ADC1MD: AD	C Module Disa	ble bit				
	$1 = ADC \mod$	ule is disabled					
	0 = ADC mod	ule is enabled					

REGISTER 29-1: PMD1: PERIPHERAL MODULE DISABLE 1 CONTROL REGISTER

REGISTER 30-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware
	0 = WDT controller via the ON bit (WDTCONL<15>)
bit 14-10	SWDTPS<4:0>: Sleep Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	$11110 = \text{Divide by } 2 \times 29 = 526,870,912$
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL<1:0>: Watchdog Timer Clock Select bits
	11 = LPRC clock
	10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep;
	01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep:
	otherwise, uses INTOSC/LPRC
	00 = Reserved
bit 4-0	RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	$11110 = \text{Divide by } 2 \land 29 = 526,870,912$
	$00001 = \text{Divide by } 2^2.4$
	$00000 = \text{Divide by } 2^{1}, 2$

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2

dsPIC33CK256MP508 FAMILY

G

Getting Started Guidelines	
Connection Requirements	
Decoupling Capacitors	
External Oscillator Pins	
ICSP Pins	
Master Clear (MCLR) Pin	
Oscillator Value Conditions on Start-up	
Targeted Applications	
Unused I/Os	

Н

High-Resolution PWM (HSPWM) with	
Fine Edge Placement	
High-Speed Analog Comparator with	
Slope Compensation DAC	
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	291
Control Registers	
Features Overview	
Resources	
HSPWM	
Architecture	
Control Registers	259

I

I/O Ports	
Configuring Analog/Digital Port Pins	
Control Registers	118
Helpful Tips	136
Parallel I/O (PIO)	115
Resources	137
Write/Read Timing	118
I ² C	
Clock Rates	393
Communicating as Master in Single	
Master Environment	
Control Registers	
Reserved Addresses	
Setting Baud Rate as Bus Master	
Slave Address Masking	
ICSP Write Inhibit	
Activation	
PICKIT 3 Programmer	
In-Circuit Emulation	
In-Circuit Senai Programming (ICSP)	505, 529
Input Change Notification (ICN)	
File Desister Instructions	
File Register Instructions	
Fundamental modes Supported	
MAC INSTRUCTIONS	
Move and Accumulator Instructions	
Other Instructions	70
Instruction Set Summary	70 531
Overview	534
Symbols Used in Opcode Descriptions	532
Instruction-Based Power-Saving Modes	493
Idle	400
Sleen	404 404
Inter-Integrated Circuit See I ² C	
Internet Address	615

Interrupt Controller
Alternate Interrupt Vector Table (AIVT)
Control and Status Registers 105
INTCON1 105
INTCON2 105
INTCON3 105
INTCON4 105
INTTREG 105
Interrupt Vector Details 98
Interrupt Vector Table (IVT)
Reset Sequence 95
Resources 105
Interrupt Vector Table
Interrupts Coincident with Power Save Instructions 494
J
JTAG Boundary Scan Interface
JIAG Interface
L
Low-Power Sleep Modes (table) 494
Μ
Memory Organization
Resources
Microchip Internet Web Site
Modulo Addressing
Applicability
Operation Example
Start and End Address
W Address Register Selection
MPLAB REAL ICE In-Circuit Emulator System
MPLAB X Integrated Development
Environment Software
MPLINK Object Linker/MPLIB Object Librarian
0
Operational Amplifier 481
Control Registers 482
Oscillator
Configuration 188
Control Registers
CPU Clocking 185
Internal Fast RC (FRC) 186
Low-Power RC (LPRC) 186
Primary (POSC)
Oscillator with High-Frequency PLL 179
Р

Packaging	581
Details	
 Marking	581
Parallel Master Port (PMP)	401
Peripheral Module Disable (PMD)	495
Peripheral Pin Select (PPS)	125
Available Peripherals	125
Available Pins	125
Control	126
Control Registers	141
Input Mapping	126
Output Mapping	131
Output Selection for Remappable Pins	134
Remappable Output Pin Registers	132
Remappable Pin Inputs	127
Selectable Input Sources	129

Resets	91
Brown-out Reset (BOR)	91
Configuration Mismatch Reset (CM)	91
Illegal Condition Reset (IOPUWR)	91
Illegal Opcode	91
Security	91
Uninitialized W Register	91
Master Clear (MCLR) Pin Reset	91
Power-on Reset (POR)	91
RESET Instruction (SWR)	91
Resources	92
Trap Conflict Reset (TRAPR)	91
Watchdog Timer Time-out Reset (WDTO)	91
Revision History	605

S

-	
SENTx Protocol Data Frames	416
Serial Peripheral Interface (SPI)	
Serial Peripheral Interface. See SPI.	
SFR Blocks	
000h	50
100h	51
200h	52
300h	53
400h	54
500h	55
600h	56
800h	57
900h	58
A00h	59
B00h	60
C00h	61
D00h	62
E00h	63
F00h	64
Single-Edge Nibble Transmission (SENT)	415
Control Registers	419
Receive Mode	418
Configuration	418
Transmit Mode	417
Configuration	417
Single-Edge Nibble Transmission for	
Automotive Applications	
Single-Edge Nibble Transmission. See SENT.	
Software Simulator	
MPLAB X SIM	
Special Features of the CPU	
Control Registers	

Т

Thermal Operating Conditions 54 Thermal Packaging Characteristics 54 Third-Party Development Tools 54 Timer1 42	46 46 44 25
Control Register	26
Timing Diagrams	
BOR and Master Clear Reset Characteristics 56	61
Clock/Instruction Cycle 18	35
External Clock55	58
High-Speed PWMx Fault Characteristics 56	33
High-Speed PWMx Module Characteristics	33
I/O Characteristics	31
I2Cx Bus Data (Master Mode) 57	72
I2Cx Bus Data (Slave Mode) 57	74
I2Cx Bus Start/Stop Bits (Master Mode) 57	72
I2Cx Bus Start/Stop Bits (Slave Mode)57	74
QEI Interface Signals	31
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	37
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	66
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	64
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	35
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 0)	38
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0)	70
UARTx I/O Characteristics	76

U

UART	
Architectural Overview	352
Character Frame	353
Control Registers	354
Data Buffers	353
Protocol Extensions	353
Unique Device Identifier (UDID)	43
Unique Device Identifier. See UDID.	
Universal Asynchronous Receiver	
Transmitter (UART)	351
Universal Asynchronous Receiver Transmitter	r. See UART.
User OTP Memory	524
V	

olto

Voltage Regulator (On-Chip)	524
W	
Watchdog Timer (WDT)	505
WWW Address	615

WWW, On-Line Support 15