

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	29
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp203t-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CK256MP508 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:	The actual set of peripheral features and
	interrupts varies by the device. Refer to the
	corresponding device tables and pinout
	diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PPS			RPINR21	D2E	111111111111111111	RPOR4	D88	000000000000
RPCON	D00	0	RPINR22	D30	111111111111111111	RPOR5	D8A	000000000000
RPINR0	D04	11111111	RPINR23	D32	111111111	RPOR6	D8C	000000000000
RPINR1	D06	111111111111111111	RPINR26	D38	111111111	RPOR7	D8E	000000000000
RPINR2	D08	11111111	RPINR27	D3A	111111111111111111	RPOR8	D90	000000000000
RPINR3	D0A	111111111111111111	RPINR29	D3E	111111111111111111	RPOR9	D92	000000000000
RPINR4	D0C	111111111111111111	RPINR30	D40	111111111	RPOR10	D94	000000000000
RPINR5	D0E	111111111111111111	RPINR32	D44	11111111	RPOR11	D96	000000000000
RPINR6	D10	111111111111111111	RPINR33	D46	111111111	RPOR12	D98	000000000000
RPINR7	D12	111111111111111111	RPINR37	D4E	111111111111111111	RPOR13	D9A	000000000000
RPINR8	D14	111111111111111111	RPINR38	D50	111111111	RPOR14	D9C	000000000000
RPINR9	D16	111111111111111111	RPINR42	D58	111111111111111111	RPOR15	D9E	000000000000
RPINR10	D18	111111111111111111	RPINR43	D5A	111111111111111111	RPOR16	DA0	000000000000
RPINR11	D1A	111111111111111111	RPINR44	D5C	111111111111111111	RPOR17	DA2	000000000000
RPINR12	D1C	111111111111111111	RPINR45	D5E	111111111111111111	RPOR18	DA4	000000000000
RPINR13	D1E	111111111111111111	RPINR46	D60	111111111111111111	RPOR19	DA6	000000000000
RPINR14	D20	111111111111111111	RPINR47	D62	111111111111111111	RPOR20	DA8	000000000000
RPINR15	D22	111111111111111111	RPINR48	D64	111111111111111111	RPOR21	DAA	000000000000
RPINR16	D24	111111111111111111	RPINR49	D66	111111111	RPOR22	DAC	000000000000
RPINR17	D26	111111111111111111	RPOR0	D80	000000000000	RPOR23	DAE	000000000000
RPINR18	D28	111111111111111111	RPOR1	D82	000000000000	RPOR24	DB0	000000000000
RPINR19	D2A	111111111111111111	RPOR2	D84	000000000000	RPOR25	DB2	000000000000
RPINR20	D2C	111111111111111111	RPOR3	D86	000000000000	RPOR26	DB4	000000000000

TABLE 4-14: SFR BLOCK D00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	00	<u> </u>	50		50		50	
		—			—	—		
bit 15							bit	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	_	—	_	—	—	ECCDBE	SGHT	
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown	

bit 15-2 Unimplemented: Read as '0'

1 = ECC double-bit error trap has occurred

0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

IABLE	TABLE 10-1: DMA CHANNEL TRIGGER SOURCES							
CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<	6:0>	Trigger (Interrupt)
0000000	00h	INT0 – External Interrupt 0	0100011	23h	PWM Generator 8	1000100	44h	CLC1 Positive Edge Interrupt
0000001	01h	SCCP1 Interrupt	0100100	24h	PWM Event C	1000101	45h	CLC2 Positive Edge Interrupt
0000010	02h	SPI1 Receiver	0100101	25h	SENT1 TX/RX	1000110	46h	SPI1 – Fault Interrupt
0000011	03h	SPI1 Transmitter	0100110	26h	SENT2 TX/RX	1000111	47h	SPI2 – Fault Interrupt
0000100	04h	UART1 Receiver	0100111	27h	ADC1 Group Convert Done	1001000	48h	
0000101	05h	UART1 Transmitter	0101000	28h	ADC Done AN0			(Reserved, do not use)
0000110	06h	ECC Single Bit Error	0101001	29h	ADC Done AN1	1010110	56h	
0000111	07h	NVM Write Complete	0101010	2Ah	ADC Done AN2	1010111	57h	PWM Event D
0001000	08h	INT1 – External Interrupt 1	0101011	2Bh	ADC Done AN3	1011000	58h	PWM Event E
0001001	09h	SI2C1 – I2C1 Slave Event	0101100	2Ch	ADC Done AN4	1011001	59h	PWM Event F
0001010	0Ah	MI2C1 – I2C1 Master Event	0101101	2Dh	ADC Done AN5	1011010	5Ah	(Reserved, do not use)
0001011	0Bh	INT2 – External Interrupt 2	0101110	2Eh	ADC Done AN6	1011011	5Bh	(Reserved, do not use)
0001100	0Ch	SCCP2 Interrupt	0101111	2Fh	ADC Done AN7	1011100	5Ch	SCCP7 Interrupt
0001101	0Dh	INT3 – External Interrupt 3	0110000	30h	ADC Done AN8	1011101	5Dh	SCCP8 Interrupt
0001110	0Eh	UART2 Receiver	0110001	31h	ADC Done AN9	1011110	5Eh	(Reserved, do not use)
0001111	0Fh	UART2 Transmitter	0110010	32h	ADC Done AN10	1011111	5Fh	ADC FIFO Ready Interrupt
0010000	10h	SPI2 Receiver	0110011	33h	ADC Done AN11	1100000	60h	CLC3 Positive Edge Interrupt
0010001	11h	SPI2 Transmitter	0110100	34h	ADC Done AN12	1100001	61h	CLC4 Positive Edge Interrupt
0010010	12h	SCCP3 Interrupt	0110101	35h	ADC Done AN13	1100010	62h	SPI3 Receiver
0010011	13h	SI2C2 – I2C2 Slave Event	0110110	36h	ADC Done AN14	1100011	63h	SPI3 Transmitter
0010100	14h	MI2C2 – I2C1 Master Event	0110111	37h	ADC Done AN15	1100100	64h	SI2C3 – I2C3 Slave Event
0010101	15h	SCCP4 Interrupt	0111000	38h	ADC Done AN16	1100101	65h	MI2C3 – I2C3 Master Event
0010110	16h	SCCP5 Interrupt	0111001	39h	ADC Done AN17	1100110	66h	SPI3 Fault
0010111	17h	SCCP6 Interrupt	0111010	3Ah	ADC Done AN18	1100111	67h	MCCP9
0011000	18h	CRC Generator Interrupt	0111011	3Bh	ADC Done AN19	1101000	68h	UART3 Receiver
0011001	19h	PWM Event A	0111100	3Ch	ADC Done AN20	1101001	69h	UART3 Transmitter
0011010	1Ah	(Reserved, do not use)	0111101	3Dh	ADC Done AN21	1101010	6Ah	ADC Done AN24
0011011	1Bh	PWM Event B	0111110	3Eh	ADC Done AN22	1101011	6Bh	ADC Done AN25
0011100	1Ch	PWM Generator 1	0111111	3Fh	ADC Done AN23	1101100	6Ch	PMP Event
0011101	1Dh	PWM Generator 2	1000000	40h	AD1FLTR1 – Oversample Filter 1	1101101	6Dh	PMP Error Event
0011110	1Eh	PWM Generator 3	1000001	41h	AD1FLTR2 – Oversample Filter 2	1101110	6Eh	
0011111	1Fh	PWM Generator 4	1000010	42h	AD1FLTR3 – Oversample Filter 3			(Reserved, do not use)
0100000	20h	PWM Generator 5	1000011	43h	AD1FLTR4 – Oversample Filter 4	1111111	7Fh	
0100001	21h	PWM Generator 6						
0100010	22h	PWM Generator 7						

TABLE 10-1: D	MA CHANNEL	TRIGGER SOURCES
---------------	------------	-----------------

REGISTER 11-9: C1TBCH: CAN TIME BASE COUNTER REGISTER HIGH^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)				nown			

bit 15-0 **TBC<31:16>** CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

Note 1: The Time Base Counter (TBC) will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

REGISTER 11-10: C1TBCL: CAN TIME BASE COUNTER REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TBC<15:8>								
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TBC<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 TBC<15:0> CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

Note 1: The TBC will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

bit 7

bit 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	_	—	—	—	_			
bit 15							bit 8			
U-0	U-0	R-1	R-0	R-0	R-0	R-0	R-0			
—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN			
bit 7	·				•		bit 0			
Legend:										
R = Readab	ole bit	W = Writable b	it	U = Unimpler	mented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-6	Unimplemen	ted: Read as '0	,							
bit 5	TXBO: Trans	mitter in Error St	tate Bus Off b	it (TERRCNT<	<7:0> > 255)					
	In Configurati	on mode, TXBO	is set since t	he module is r	not on the bus.					
bit 4	TXBP: Transi	TXBP: Transmitter in Error State Bus Passive bit (TERRCNT<7:0> > 127)								
bit 3	RXBP: Recei	ver in Error State	e Bus Passive	e bit (RERRCN	NT<7:0> > 127)					
bit 2	TXWARN: Tra	ansmitter in Erro	or State Warni	ng bit (128 > T	ERRCNT<7:0>	· > 95)				

- bit 1 **RXWARN:** Receiver in Error State Warning bit (128 > RERRCNT<7:0> > 95)
- bit 0 EWARN: Transmitter or Receiver in Error State Warning bit

REGISTER 11-45: C1TRECL: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRC	NT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRCI	NT<7:0>			
bit 7							bit 0
Legend:							

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	TERRCNT<7:0>: Transmit Error Counter bits

bit 7-0 RERRCNT<7:0>: Receive Error Counter bits

R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 CLIEN⁽²⁾ FI TIFN⁽¹⁾ SIFN⁽⁴⁾ FFIFN⁽³⁾ **IEVTSEL1 IEVTSEL0** ____ _ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADTR2EN3 ADTR2EN2 ADTR2EN1 ADTR10FS4 ADTR10FS3 ADTR10FS2 ADTR10FS1 ADTR10FS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown FLTIEN: PCI Fault Interrupt Enable bit⁽¹⁾ bit 15 1 = Fault interrupt is enabled 0 = Fault interrupt is disabled bit 14 CLIEN: PCI Current-Limit Interrupt Enable bit⁽²⁾ 1 = Current-limit interrupt is enabled 0 = Current-limit interrupt is disabled bit 13 FFIEN: PCI Feed-Forward Interrupt Enable bit⁽³⁾ 1 = Feed-forward interrupt is enabled 0 = Feed-forward interrupt is disabled SIEN: PCI Sync Interrupt Enable bit⁽⁴⁾ bit 12 1 = Sync interrupt is enabled 0 = Sync interrupt is disabled bit 11-10 Unimplemented: Read as '0' bit 9-8 IEVTSEL<1:0>: Interrupt Event Selection bits 11 = Time base interrupts are disabled (Sync, Fault, current-limit and feed-forward events can be independently enabled) 10 = Interrupts CPU at ADC Trigger 1 event 01 = Interrupts CPU at TRIGA compare event 00 = Interrupts CPU at EOC bit 7 ADTR2EN3: ADC Trigger 2 Source is PGxTRIGC Compare Event Enable bit 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 2 bit 6 ADTR2EN2: ADC Trigger 2 Source is PGxTRIGB Compare Event Enable bit 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 2 bit 5 ADTR2EN1: ADC Trigger 2 Source is PGxTRIGA Compare Event Enable bit 1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 2 bit 4-0 ADTR1OFS<4:0>: ADC Trigger 1 Offset Selection bits 11111 = Offset by 31 trigger events 00010 = Offset by 2 trigger events 00001 = Offset by 1 trigger event 00000 = No offset **Note 1:** An interrupt is only generated on the rising edge of the PCI Fault active signal. 2: An interrupt is only generated on the rising edge of the PCI current-limit active signal.

REGISTER 12-18: PGxEVTH: PWM GENERATOR x EVENT REGISTER HIGH

- 3: An interrupt is only generated on the rising edge of the PCI feed-forward active signal.4: An interrupt is only generated on the rising edge of the PCI Sync active signal.
- DS70005349B-page 278

REGISTER 15-5: POSxCNTL: POSITION x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	le bit U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 15-6: POSxCNTH: POSITION x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<31:24>			
bit 15							bit 8
		5444.6	5444.6	54446		54446	5444.6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCI	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unkr	nown

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 16-5: UxBRG: UARTx BAUD RATE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	10,00-0	17.44-0			1000-0	10.00-0	10,00-0
			BRO	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15 BRG<15:0>: Baud Rate Divisor bits

REGISTER 16-6: UxBRGH: UARTx BAUD RATE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—			—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—		BRG<	19:16>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3-0 BRG<19:16>: Baud Rate Divisor bits

ABEL 10-2. IZCA RESERVED ADDRESSES								
Slave Address	R/W Bit	Description						
0000 000	0	General Call Address ⁽²⁾						
0000 0000	1	Start Byte						
0000 001	х	Cbus Address						
0000 01x	х	Reserved						
0000 1xx	x	HS Mode Master Code						
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾						
1111 1xx	x	Reserved						

TABLE 18-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

bit 3-0	Step Command	OPTION<3:0>	Command Description
	PTGCTRL ⁽¹⁾	0000	NOP.
		0001	Reserved; do not use.
		0010	Disable Step delay timer (PTGSD).
		0011	Reserved; do not use.
		0100	Reserved; do not use.
		0101	Reserved; do not use.
		0110	Enable Step delay timer (PTGSD).
		0111	Reserved; do not use.
		1000	Start and wait for the PTG Timer0 to match the PTGT0LIM register.
		1001	Start and wait for the PTG Timer1 to match the PTGT1LIM register.
		1010	Wait for the software trigger (level, PTGSWT = 1).
		1011	Wait for the software trigger (positive edge, PTGSWT = 0 to 1).
		1100	Copy the PTGC0LIM register contents to the strobe output.
		1101	Copy the PTGC1LIM register contents to the strobe output.
		1110	Copy the PTGL0 register contents to the strobe output.
		1111	Generate the triggers indicated in the PTGBTE register.
	PTGADD(1)	0000	Add the PTGADJ register contents to the PTGC0LIM register.
		0001	Add the PTGADJ register contents to the PTGC1LIM register.
		0010	Add the PTGADJ register contents to the PTGT0LIM register.
		0011	Add the PTGADJ register contents to the PTGT1LIM register.
		0100	Add the PTGADJ register contents to the PTGSDLIM register.
		0101	Add the PTGADJ register contents to the PTGL0 register.
		0110	Reserved; do not use.
		0111	Reserved; do not use.
	PTGCOPY ⁽¹⁾	1000	Copy the PTGHOLD register contents to the PTGC0LIM register.
		1001	Copy the PTGHOLD register contents to the PTGC1LIM register.
		1010	Copy the PTGHOLD register contents to the PTGT0LIM register.
		1011	Copy the PTGHOLD register contents to the PTGT1LIM register.
		1100	Copy the PTGHOLD register contents to the PTGSDLIM register.
		1101	Copy the PTGHOLD register contents to the PTGL0 register.
		1110	Reserved; do not use.
		1111	Reserved; do not use.

TABLE 24-2: PTG COMMAND OPTIONS

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

NOTES:

REGISTER 28-9: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PSINT	⁻ V<15:8>					
bit 15 bit									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PSIN	TV<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		

bit 15-0 **PSINTV<15:0>:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

REGISTER 28-10: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1000 0	1000 0	1000 0		V<23:16>	1000 0	1000 0	10000
bit 7							bit 0
1							
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **PSINTV<31:16>:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

29.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the regulators can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) bit (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) bit can be set to keep the regulators active during Sleep mode. The available Low-Power Sleep modes are shown in Table 29-1. Additional regulator information is available in **Section 30.4 "On-Chip Voltage Regulators"**.

Relative Power	LPWREN	VREGS	MODE	
Highest	0	1	Full power, active	
_	0	0	Full power, standby	
_	1 (1)	1	Low power, active	
Lowest	1 (1)	0	Low power, standby	

TABLE 29-1: LOW-POWER SLEEP MODES

Note 1: Low-Power modes, when LPWREN = 1, can only be used in the industrial temperature range.

29.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 29.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON<13>).

29.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

30.7 JTAG Interface

The dsPIC33CK256MP508 family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface will be provided in future revisions of this document.

Note:	Refer to "Programming and Diagnostics"						
	(DS70608) in the "dsPIC33/PIC24 Family						
	Reference Manual" for further information on						
	usage, configuration and operation of the						
	JTAG interface.						

30.8 In-Circuit Serial Programming™ (ICSP™)

The dsPIC33CK256MP508 family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33CK256MP508 Family Flash Programming Specification" (DS70005300) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

30.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or the REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGCx (Emulation/Debug Clock) and PGDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGCx/PGDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGCx and PGDx).

30.10 Code Protection and CodeGuard™ Security

dsPIC33CK256MP508 family devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data, which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 1024 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 512 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (2048 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash, except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

31.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33CK256MP508 familv of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "16-Bit MCU and DSC Programmer's Reference Manual' (DS70000157), which is available from the Microchip web site (www.microchip.com).

The dsPIC33CK256MP508 family instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 31-1 lists the general symbols used in describing the instructions.

The dsPIC33 instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 33-9:WATCHDOG TIMER DELTA CURRENT $(\triangle IwDT)^{(1)}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	No. Typ. Max. Units Conditions						
DC61	0.75	5	μA	-40°C			
	2.0	12	μA	+25°C	3.3V		
	3.88	24	μA	+85°C	3.3V		
	5.69	40	μA	+125°C			

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

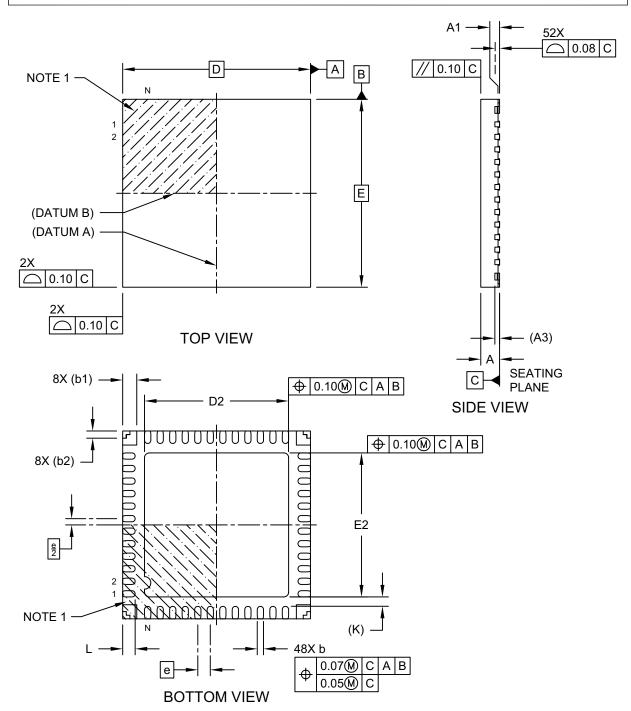

Operating Con Operating temp		-40°C	$\leq TA \leq +8$		ial		
Parameter No.	Тур.	Max.	Units	Conditions			
DC100	5.96	6.6	mA	-40°C	3.3V (AVCO = 1000 MHz. PLLFBD		
	5.99	6.7	mA	+25°C		PWM Input (AFPLLO = 500 MHz) (AVCO = 1000 MHz, PLLFBD = 125, API I DIV1 = 2)	
	5.92	6.9	mA	+85°C			
	5.47	7	mA	+125°C		· · ·,	
DC101	4.89	5.4	mA	-40°C			
-	4.91	5.5	mA	+25°C	3.3V	PWM Input (AFPLLO = 400 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 1)	
	4.85	5.7	mA	+85°C			
	4.42	5.7	mA	+125°C			
DC102	2.77	3.7	mA	-40°C			
	2.75	3.7	mA	+25°C	3.3V	PWM Input (AFPLLO = 200 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 2)	
	2.7	3.7	mA	+85°C			
	2.26	3.7	mA	+125°C		,	
DC103	1.67	2	mA	-40°C	3.3V		
	1.66	2.2	mA	+25°C		PWM Input (AFPLLO = 100 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 4)	
	1.63	2.3	mA	+85°C			
	1.17	2.3	mA	+125°C		, ,	

TABLE 33-10: PWM DELTA CURRENT⁽¹⁾

Note 1: APLL current is not included. The APLL current will be the same if more than 1 PWM is running. Listed delta currents are for only one PWM instance. All parameters are characterized but not tested during manufacturing.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-442A-M4 Sheet 1 of 2

NOTES: