

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp206t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.1 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CK256MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CK256MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-2.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

4.1.3 UNIQUE DEVICE IDENTIFIER (UDID)

All dsPIC33CK256MP508 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801200 and 0x801208 in the device configuration space. Table 4-1 lists the addresses of the identifier words and shows their contents

TABLE 4-1: UDID ADDRESSES

UDID	Address	Description
UDID1	0x801200	UDID Word 1
UDID2	0x801202	UDID Word 2
UDID3	0x801204	UDID Word 3
UDID4	0x801206	UDID Word 4
UDID5	0x801208	UDID Word 5

4.2 Data Address Space

The dsPIC33CK256MP508 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-7, Figure 4-8 and Figure 4-9.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CK256MP508 family devices implement up to 16 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CK256MP508 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PPS			RPINR21	D2E	111111111111111111	RPOR4	D88	000000000000
RPCON	D00	0	RPINR22	D30	111111111111111111	RPOR5	D8A	000000000000
RPINR0	D04	11111111	RPINR23	D32	111111111	RPOR6	D8C	000000000000
RPINR1	D06	111111111111111111	RPINR26	D38	111111111	RPOR7	D8E	000000000000
RPINR2	D08	11111111	RPINR27	D3A	111111111111111111	RPOR8	D90	000000000000
RPINR3	D0A	111111111111111111	RPINR29	D3E	111111111111111111	RPOR9	D92	000000000000
RPINR4	D0C	111111111111111111	RPINR30	D40	111111111	RPOR10	D94	000000000000
RPINR5	D0E	111111111111111111	RPINR32	D44	11111111	RPOR11	D96	000000000000
RPINR6	D10	111111111111111111	RPINR33	D46	111111111	RPOR12	D98	000000000000
RPINR7	D12	111111111111111111	RPINR37	D4E	111111111111111111	RPOR13	D9A	000000000000
RPINR8	D14	111111111111111111	RPINR38	D50	111111111	RPOR14	D9C	000000000000
RPINR9	D16	111111111111111111	RPINR42	D58	111111111111111111	RPOR15	D9E	000000000000
RPINR10	D18	111111111111111111	RPINR43	D5A	111111111111111111	RPOR16	DA0	000000000000
RPINR11	D1A	111111111111111111	RPINR44	D5C	111111111111111111	RPOR17	DA2	000000000000
RPINR12	D1C	111111111111111111	RPINR45	D5E	111111111111111111	RPOR18	DA4	000000000000
RPINR13	D1E	111111111111111111	RPINR46	D60	111111111111111111	RPOR19	DA6	000000000000
RPINR14	D20	111111111111111111	RPINR47	D62	111111111111111111	RPOR20	DA8	000000000000
RPINR15	D22	111111111111111111	RPINR48	D64	111111111111111111	RPOR21	DAA	000000000000
RPINR16	D24	111111111111111111	RPINR49	D66	111111111	RPOR22	DAC	000000000000
RPINR17	D26	111111111111111111	RPOR0	D80	000000000000	RPOR23	DAE	000000000000
RPINR18	D28	111111111111111111	RPOR1	D82	000000000000	RPOR24	DB0	000000000000
RPINR19	D2A	111111111111111111	RPOR2	D84	000000000000	RPOR25	DB2	000000000000
RPINR20	D2C	111111111111111111	RPOR3	D86	000000000000	RPOR26	DB4	000000000000

TABLE 4-14: SFR BLOCK D00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices.

The dsPIC33CK256MP508 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33CK256MP508 family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- · Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

The dsPIC33CK256MP508 family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment (BS) is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33CK256MP508 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 8-12: CNFx: INTERRUPT CHANGE NOTIFICATION FLAG FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNFx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNFx	<7:0>			
bit 7							bit 0
Legend:							

Ecgenia.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15- CNFx<15:0>: Interrupt Change Notification Flag for PORTx bits

When CNSTYLE (CNCONx<11>) = 1:

1 = An enabled edge event occurred on the PORTx[n] pin

0 = An enabled edge event did not occur on the PORTx[n] pin

Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 8-54: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 13-8	RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP32R<5:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-55: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0		
bit 15	÷				·		bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			unknown			
bit 15-14	Unimplemen	ted: Read as '	כי						
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits								

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note 1: This data sheet summarizes the features of this group of dsPIC33 devices. It is not intended to be a comprehensive reference source. For more information, refer to "Direct Memory Access Controller (DMA)" (DS39742) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus, between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations, causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Four Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations
- A simplified block diagram of the DMA Controller is shown if Figure 10-1.

REGISTER 11-25: C1TXREQH: CAN TRANSMIT REQUEST REGISTER HIGH

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0			
TXREQ<31:24>										
bit 15 bit 8										
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0			
			TXREQ	<23:16>						
bit 7							bit 0			
Legend:		S = Settable bit	t	HC = Hardwa	are Clearable b	it				
R = Readable	bit	W = Writable bi	it	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 TXREQ<31:16>: Unimplemented

REGISTER 11-26: C1TXREQL: CAN TRANSMIT REQUEST REGISTER LOW

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	
			TXREC	2<15:8>				
bit 15							bit 8	
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	
			TXREQ<7:1>				TXREQ0	
bit 7							bit 0	
Legend:		S = Settable b	it	HC = Hardwa	are Clearable b	it		
R = Readabl	e bit	W = Writable b	pit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-8	TXREQ<15:	8>: Unimplemen	nted					
bit 7-1	TXREQ<7:1	>: Message Sen	d Request bit	S				
	<u>TXEN = 1 (c</u>	bject configured	as a transmit	object):				
	Setting this bit to '1' requests sending a message. The bit will automatically clear when the message(s) queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.							
	TXEN = 0 (object configured as a receive object): This bit has no effect.							
bit 0	Setting this b	ransmit Queue N bit to '1' requests e object is (are) s	sending a me	ssage. The bit				

REGISTER 12-13: F	PGxCONH: PWM GENERATOR x CONTROL REGISTER H	HIGH
-------------------	---	------

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
MDCSE	L MPERSEL	MPHSEL		MSTEN	UPMOD2	UPMOD1	UPMOD0				
bit 15	·						bit 8				
	DAMA				D 444 0		DAMA				
r-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	TRGMOD	—		SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^(1,2,3)				
bit 7							bit				
Legend:		r = Reserved	bit								
R = Read	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkne	own				
bit 15		laster Duty Cy	-								
		enerator uses	•								
L:1 4 4		enerator uses	-								
bit 14		Master Period	•								
		enerator uses enerator uses									
bit 13		MPHSEL: Master Phase Register Select bit									
		1 = PWM Generator uses MPHASE register									
		0 = PWM Generator uses PGxPHASE register									
bit 12	Unimpleme	Unimplemented: Read as '0'									
bit 11	MSTEN: Ma	ster Update E	nable bit								
			dcasts softw	/are set/clear of t	he UPDREQ stat	us bit and EOC	signal to othe				
	-	enerators	not broode								
1:140.0					status bit state o	r EOC signal					
bit 10-8		ed immediate u		ode Selection bit	S						
			•	is soon as possib	le, when a Maste	r update reques	t is received.				
			est will be tra	ansmitted if MSTE	EN = 1 and UPDA	TE = 1 for the re	equesting PWI				
		erator.									
		ed SOC update registers at st		cycle if a Master	update request	is received A	master undat				
					PDATE = 1 for the						
		ediate update									
					ble, if UPDATE = $(UPDATE = 1)$						
				update occurs.	(UPDATE = 1).	THE OFDATE S	latus dit will d				
	000 = SOC										
		registers at sta natically after t			ATE = 1. The UP	DATE status bit	will be cleare				
bit 7		Maintain as '0'									
Note 1:	The PCI selecte	ed Sync signal	is always a	vailable to be OR	d with the select	ed SOC signal (per the				
	SOCS<3:0> bits	s if the PCI Sy	nc function i	s enabled.							
2:		•		•	e from the same of						
				-	CI Sync logic so t	ne trigger signa	ii may be				
3.	-	nchronized to the PWM Generator clock domain. /M Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator									

3: PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 13-0. ADCON4R. ADC CONTROL REGISTER 4 HIGH	REGISTER 13-8:	ADCON4H: ADC CONTROL REGISTER 4 HIGH
---	----------------	--------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	—	—	—	_		
bit 15				·			bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—		C1CHS1	C1CHS0	C0CHS1	C0CHS0		
bit 7				•			bit 0		
Legend:									
R = Readat	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unkr	known		
bit 15-4	Unimplemen	ted: Read as '0)'						
bit 3-2	C1CHS<1:0>	: Dedicated AD	C Core 1 Inpu	t Channel Sele	ction bits				
	11 = Reserve	d							
	10 = Reserve	d							
	01 = ANA1								
	00 = AN1								

bit 1-0 COCHS<1:0>: Dedicated ADC Core 0 Input Channel Selection bits

11 = Reserved

10 = Reserved

01 = ANA0

00 **= AN0**

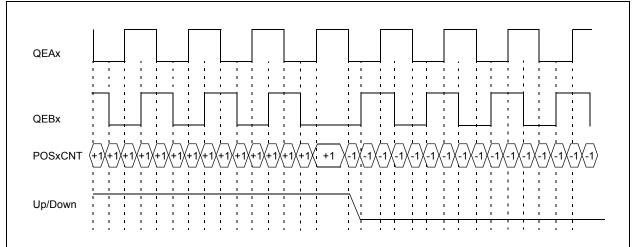
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
DACON	_	DACSIDL	_	_	_		—			
bit 15		•	·				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
CLKSEL1(1,3)	CLKSEL0 ^(1,3)	CLKDIV1 ^(1,3)	CLKDIV0 ^(1,3)	—	FCLKDIV2 ⁽²⁾	FCLKDIV1 ⁽²⁾	FCLKDIV0 ⁽²			
bit 7							bit (
Lonordi										
Legend: R = Readable	, hit	W = Writable b	:+	II – Unimpl	emented bit, rea	d aa '0'				
-n = Value at		'1' = Bit is set	ut.	0 = 011111pr '0' = Bit is c						
	FUR	I – Dit is set			lealeu					
bit 15	DACON: Corr	nmon DAC Mod	ule Enable bit							
	1 = Enables [
					to reduce powe	er consumption	; any pending			
	-	de and/or unde		are cleared						
bit 14	-	ted: Read as '0'								
bit 13		AC Stop in Idle N								
		ues module operati			le mode					
bit 12-8		•								
bit 7-6	-	t ed: Read as '0' >: DAC Clock S		₋ (1.3)						
DIL 7-0	11 = FPLLO	DAC CIUCK S	ource Select bit	5						
	10 = AFPLLO									
	01 = Fvco/2									
	00 = AFvco/2		(4.0)							
bit 5-4		: DAC Clock Di	vider bits ^(1,3)							
	11 = Divide-by-4 10 = Divide-by-3 (non-uniform duty cycle)									
	10 = Divide-by 01 = Divide-by		i duty cycle)							
	00 = 1x	y-2								
bit 3	Unimplement	ted: Read as '0'								
bit 2-0	-	>: Comparator		der bits ⁽²⁾						
	111 = Divide-l	•								
	110 = Divide-by-7									
	101 = Divide-l									
	100 = Divide-l 011 = Divide-l									
	010 = Divide-l									
	001 = Divide-l									
	000 = 1x									
Note 1: Th	ese bits should	only be change	d when DACON	l = 0 to avoid	d unpredictable l	behavior.				
		• •			SEL<1:0>, and t		2.			
	-					,				

REGISTER 14-1: DACCTRL1L: DAC CONTROL 1 LOW REGISTER

- 3: Clock source and dividers should yield an effective DAC clock input of 500 MHz.

15.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (DS70000601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).


The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK256MP508 family implements 2 instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 15-1 illustrates the Quadrature Encoder Interface signals.

The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 15-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

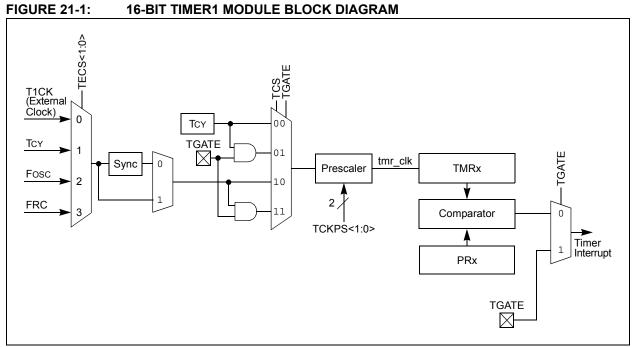
The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.

FIGURE 15-1: QUADRATURE ENCODER INTERFACE SIGNALS

21.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.


The Timer1 module has the following unique features over other timers:

- · Can be Operated in Asynchronous Counter mode
- · Asynchronous Timer
- · Operational during CPU Sleep mode
- Software Selectable Prescalers 1:1, 1:8, 1:64 and 1:256
- External Clock Selection Control
- The Timer1 External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler

If Timer1 is used for SCCP, the timer should be running in Synchronous mode.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode
- A block diagram of Timer1 is shown in Figure 21-1.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾		_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	OPSSRC: Ou	itput Postscaler	Source Sele	ct bit ⁽¹⁾						
				er output events	6					
		ostscaler scales		terrupt events						
bit 14		etrigger Enable l se can be retrigg		DICEN hit - 1						
				en TRIGEN bit =	• 1					
bit 13-12		ted: Read as 'o								
bit 11-8	OPS3<3:0>:	CCPx Interrupt	Output Posts	cale Select bits ^{(;}	3)					
	1111 = Interrupt every 16th time base period match									
		upt every 15th t	ime base per	iod match						
	 0100 = Interr	upt every 5th tir	ne base peric	d match						
	0011 = Interr	upt every 4th tir	ne base peric	d match or 4th i	• •					
				d match or 3rd i						
				od match or 2nd od match or inpu						
bit 7		Px Trigger Enal	-							
		peration of time		ed						
		peration of time								
bit 6		one-Shot Trigge								
		t Trigger mode t Trigger mode		gger duration is	set by OSCN	Γ<2:0>				
bit 5		CPx Clock Sele								
				dule synchroniza gnal is the Time						
bit 4-0		CCPx Synchro	-	-						
		-5 for the definit								
Note 1: Th	is control bit ha	as no function ir	Input Captur	e modes.						
		as no function w								
3 : Ou	tout postscale	settinas. from 1:	5 to 1:16 (010	00-1111), will re	sult in a FIFO I	ouffer overflow f	for			

REGISTER 22-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

3: Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

23.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	
LCEN	—	—	—	INTP	INTN	—	—	
bit 15							bit 8	
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0	
bit 7							bit 0	
Legend:	la hit		- : 4		anted bit was			
R = Readab		W = Writable	DIL	•	nented bit, read			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	LCEN: CLCx	Enable bit						
DIL 15		enabled and mi	vina innut siar	nale				
		disabled and ha						
bit 14-12	Unimplemen	ted: Read as ')'	•				
bit 11	INTP: CLCx I	Positive Edge Ir	nterrupt Enabl	e bit				
		Ų		ng edge occurs	on LCOUT			
	•	will not be gene						
bit 10		Negative Edge	•					
		will be generate will not be gene		ing edge occurs	s on LCOUT			
bit 9-8		ited: Read as '						
bit 7	-	Port Enable bit						
		rt pin output is e						
		rt pin output is c						
bit 6	LCOUT: CLC	x Data Output	Status bit					
	1 = CLCx output high							
	0 = CLCx out	•						
bit 5		x Output Polari	•					
		out of the modul out of the modul		od				
bit 4-3		ited: Read as '		eu				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0				
bit 15							bit a				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0		PTGWDT2	PTGWDT1	PTGWDT0				
bit 7					1100012	TIONDIT	bit				
Legend:											
R = Readable		W = Writable		-	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	PTGCI K-2.0)>: PTG Modul	e Clock Source	a Selection bit	e						
DIL 15-15	111 = CLC1				.5						
		CO DIV 4 outpu	ıt								
	110 = PLL VCO DIV 4 output 101 = PTG module clock source will be SCCP7										
	100 = PTG module clock source will be SCCP8										
	011 = Input from Timer1 Clock pin, T1CK										
	010 = PTG module clock source will be ADC clock										
		001 = PTG module clock source will be Fosc									
	000 = PTG module clock source will be FOSC/2 (FP)										
bit 12-8	PTGDIV<4:0>: PTG Module Clock Prescaler (Divider) bits										
	11111 = Divide-by-32 11110 = Divide-by-31										
	00001 = Divid 00000 = Divid	•									
bit 7-4		•	er Output Pulse	e-Width (in PT	G clock cycles)	bits					
	PTGPWD<3:0>: PTG Trigger Output Pulse-Width (in PTG clock cycles) bits 1111 = All trigger outputs are 16 PTG clock cycles wide										
	1110 = All trigger outputs are 15 PTG clock cycles wide										
	0001 = All trigger outputs are 2 PTG clock cycles wide										
	-	gger outputs ar		cycle wide							
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	PTGWDT<2:0>: PTG Watchdog Timer Time-out Selection bits										
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t dog Timer will t									
		dog Timer will t									
	000 = Watcho	dog Timer is di	sabled								

29.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the regulators can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) bit (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) bit can be set to keep the regulators active during Sleep mode. The available Low-Power Sleep modes are shown in Table 29-1. Additional regulator information is available in **Section 30.4 "On-Chip Voltage Regulators"**.

Relative Power	LPWREN VREG		MODE
Highest	0	1	Full power, active
_	0	0	Full power, standby
_	1 (1)	1	Low power, active
Lowest	1 (1)	0	Low power, standby

TABLE 29-1: LOW-POWER SLEEP MODES

Note 1: Low-Power modes, when LPWREN = 1, can only be used in the industrial temperature range.

29.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 29.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

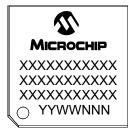
- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON<13>).

29.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.


34.1 Package Marking Information (Continued)

48-Lead UQFN (6x6 mm)

Example

PIC33CK 256MP505 1710017

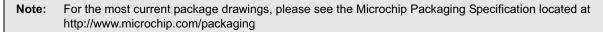
64-Lead TQFP (10x10x1 mm)

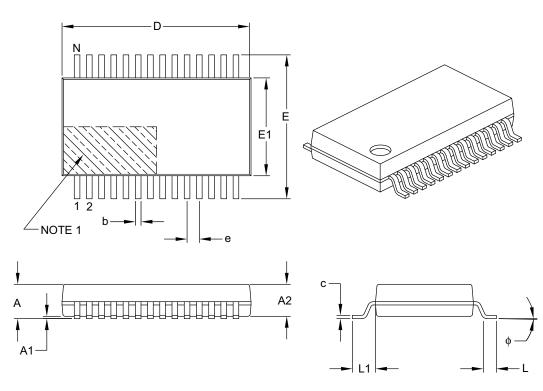
64-Lead QFN (9x9x0.9 mm)

80-Lead TQFP (12x12x1 mm)

Example

Example




Example

34.2 Package Details

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	MILLIMETERS				
Dim	ension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

NOTES: