

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.1 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CK256MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CK256MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-2.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description			
W0 through W15 ⁽¹⁾	Working Register Array			
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1			
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2			
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3			
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4			
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)			
PC	23-Bit Program Counter			
SR	ALU and DSP Engine STATUS Register			
SPLIM	Stack Pointer Limit Value Register			
TBLPAG	Table Memory Page Address Register			
DSRPAG	Extended Data Space (EDS) Read Page Register			
RCOUNT	REPEAT Loop Counter Register			
DCOUNT	DO Loop Counter Register			
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)			
DOENDH, DOENDL	DO Loop End Address Register (High and Low)			
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits			

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL, if IPL< $3 \ge 1$. User interrupts are disabled when IPL< $3 \ge 1$.
- 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.4.2 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-18 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.2.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

TABLE 4-18: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_	_	—	—	—		CAN	NAE		
bit 15			·	-			bit 8		
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0		
	—	—	DOOVR	—		—	APLL		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-10	Unimpleme	Unimplemented: Read as '0'							
bit 9	CAN: CAN A	CAN: CAN Address Error Soft Trap Status bit							
		1 = CAN address error soft trap has occurred							
	0 = CAN add	0 = CAN address error soft trap has not occurred							
bit 8		NAE: NVM Address Error Soft Trap Status bit							
			t trap has occu						
			t trap has not o	occurred					
bit 7-5	-	Unimplemented: Read as '0'							
bit 4		DOOVR: DO Stack Overflow Soft Trap Status bit							
		1 = DO stack overflow soft trap has occurred							
		0 = DO stack overflow soft trap has not occurred							
bit 3-1	-	Unimplemented: Read as '0'							
bit 0		APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit							
		1 = APLL lock soft trap has occurred							
	0 = APLL loc	0 = APLL lock soft trap has not occurred							

8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK256MP508 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1 Detects a mismatch betwee the last read state and the current state of the pin	
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change						
	Notification pins should always be						
	disabled when the port pin is configured						
	as a digital output.						

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

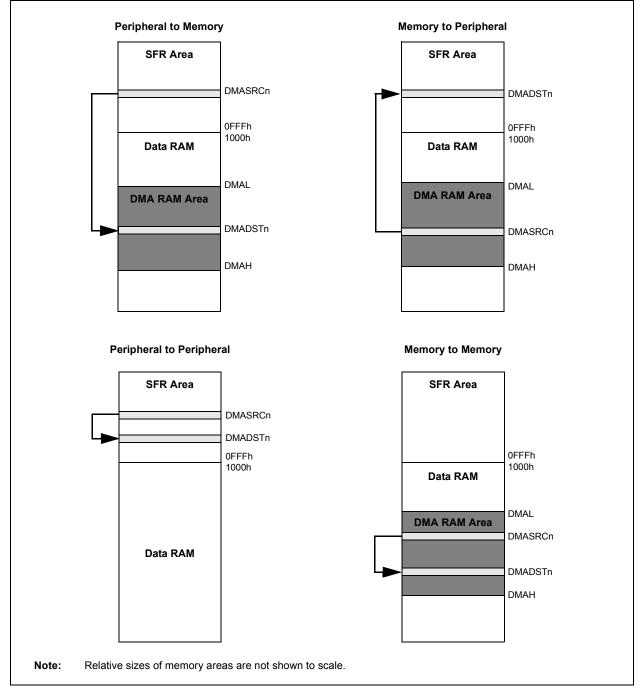
REGISTER 8-79:	RPOR25: PERIPHERAL PIN SELECT OUTPUT REGISTER 25
----------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'


bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

FIGURE 10-2: TYPES OF DMA DATA TRANSFERS

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾			HALFEN			
bit 7							bit (
Legend:										
	, hit	M - Mritabla	h:+		contod bit roo	d aa 'O'				
R = Readable		W = Writable		U = Unimplem						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	DBUFWF: DN	MA Buffered Da	ata Write Flag I	oit ⁽¹⁾						
			•	not been writter	to the location	on specified in	DMADSTn o			
		Cn in Null Write								
		tent of the DN Cn in Null Write		been written	to the locatio	n specified in	DMADSTn o			
bit 14-8		: DMA Channe		tion hits						
		-1 for a comple								
bit 7				Flag bit(1,2)						
	HIGHIF: DMA High Address Limit Interrupt Flag bit ^(1,2) 1 = The DMA channel has attempted to access an address higher than DMAH or the upper limit of the									
	data RAN				g					
				high address li	mit interrupt					
bit 6		Low Address I								
			attempted to a	ccess the DMA	SFR address	lower than DM	AL, but above			
		range (07FFh)	ot invokod the	low address lin	ait intorrunt					
bit 5		A Complete Op			int interrupt					
DIL D	If CHEN = 1:	A Complete Op		ipt Flag bit.						
		ous DMA sessi	on has ended	with completion	I					
	•	nt DMA sessio		•						
	If CHEN = 0:									
	•			with completion						
	•			without complet	lion					
bit 4	HALFIF: DMA 50% Watermark Level Interrupt Flag bit ⁽¹⁾									
		n has reached n has not reach								
bit 3		MA Channel Ov		• •						
			-	still completing	the operation	based on the n	revious triage			
		un condition ha				20000 011 010 p				
bit 2-1	Unimplemen	ted: Read as '	כי							
bit 0	-	Ifway Completi		bit						
				n has reached it	s halfway poir	nt and at comple	etion			
				pletion of the tra						
Note 1: Se	tting these flag	s in software de	oes not genera	ate an interrupt.						
			-	or DMADSTn is	s either greate	r than DMAH o	r less than			

REGISTER 10-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADTR1PS4	ADTR1PS3	ADTR1PS2	ADTR1PS1	ADTR1PS0	ADTR1EN3	ADTR1EN2	ADTR1EN1
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		UPDTRG1	UPDTRG0	PGTRGSEL2 ⁽¹⁾	PGTRGSEL1 ⁽¹⁾	PGTRGSEL0 ⁽¹⁾
bit 7							bit 0
r							
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unknow	n
bit 15-11	ADTR1PS<	4:0>: ADC Tri	gger 1 Posts	caler Selection	n bits		
	11111 = 1:3	2					
	 00010 = 1:3	1					
	00001 = 1:2						
	00000 = 1:1						
bit 10	ADTR1EN3	ADC Trigger	1 Source is I	PGxTRIGC Co	ompare Event En	able bit	
		•	•		s trigger source f		
		-	-			or ADC Trigger 1	
bit 9					ompare Event En		
					s trigger source fo s trigger source f		
bit 8	ADTR1EN1:	: ADC Trigger	1 Source is I	PGxTRIGA Co	ompare Event En	able bit	
					s trigger source fo		
		-	-	t is disabled a	s trigger source f	or ADC Trigger 1	
bit 7-5	-	nted: Read a					
bit 4-3		:0>: Update T					
					sets the UPDATI		
					s the UPDATE bi		
				GxSTAT<4>)			
bit 2-0	PGTRGSEL	<2:0>: PWM	Generator Tr	igger Output S	Selection bits ⁽¹⁾		
	111 = Rese						
	110 = Rese						
	101 - Rese 100 = Rese						
	011 = PGxT	RIGC compa		e PWM Gene			
				e PWM Gener			
		RIGA compare event is the P		e PWM Gener	ator trigger		
	000 - EOC	Eveni is the F	www.General				

REGISTER 12-17: PGxEVTL: PWM GENERATOR x EVENT REGISTER LOW

Note 1: These events are derived from the internal PWM Generator time base comparison events.

REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S)

	•			-1, 02, 11	,		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSYNCDIS	TERM2	TERM1	TERM0	AQPS	AQSS2	AQSS1	AQSS0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWTERM	PSYNC	PPS	PSS4	PSS3	PSS2	PSS1	PSS0
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read a	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15			ynchronization				
	0 = Termina	tion of latched	PCI occurs at	PWM EOC			
bit 14-12	TERM<2:0>	: Termination I	Event Selection	bits			
	00000	ts PCI Source					
		ts PCI Source		orator output s	elected by the PV		-)
		RIGC trigger e				VIVIF CI~2.02 Dia	>)
		RIGB trigger e					
		RIGA trigger e					
					sitions from active the SWTERM bit I		
bit 11			er Polarity Sele			ocation	
Dit 11	1 = Inverted 0 = Not inve		er i olanty Sele				
bit 10-8	AQSS<2:0>	: Acceptance	Qualifier Source	e Selection bits			
		-	nly (qualifier fo				
		ts PCI Source					
		ts PCI Source		orator output of	plaated by the DV	WMDCL-2.05 hite	
		Generator is f			elected by the PV		>)
	010 = LEB is		inggoroa				
				enerator signal)			
				ualifier forced to	oʻ1')		
bit 7		CI Software T					
			•	a termination ev	ent. This bit loca	tion always read	Is as ' 0'.
bit 6		-	ion Control bit				
			nized to PWM chronized to PV				
bit 5	PPS: PCI Pc	plarity Select b	it				
	1 = Inverted						
	0 = Not inve						

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DACON	—	DACSIDL	_	_	_		—
bit 15		•					bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CLKSEL1(1,3)	CLKSEL0 ^(1,3)	CLKDIV1 ^(1,3)	CLKDIV0 ^(1,3)	—	FCLKDIV2 ⁽²⁾	FCLKDIV1 ⁽²⁾	FCLKDIV0 ⁽²
bit 7							bit
<u> </u>							
Legend:	- L :4		:.	11 11		-l (O)	
R = Readable		W = Writable b	it	•	emented bit, rea	d as '0	
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is c	leared		
bit 15	DACON: Com	nmon DAC Mod	ule Enable hit				
bit 15	1 = Enables [
			and disables F	SCM clocks	to reduce powe	r consumption	; any pendin
	Slope mo	de and/or unde	rflow conditions	are cleared			
bit 14	•	ted: Read as '0'					
bit 13		AC Stop in Idle N					
		les module oper			le mode		
h:+ 40.0		module operati					
bit 12-8	•	ted: Read as '0'		- (1.3)			
bit 7-6	11 = FPLLO	>: DAC Clock S	ource Select bit	S(,,,,,			
	11 = PPLLO 10 = AFPLLO						
	01 = Fvco/2						
	00 = AFvco/2						
bit 5-4		: DAC Clock Di	vider bits ^(1,3)				
	11 = Divide-by	•					
	10 = Divide-by 01 = Divide-by	y-3 (non-uniform	n duty cycle)				
	01 = Divide-by = 00 = 1x	y-2					
bit 3	Unimplement	ted: Read as '0'	,				
bit 2-0	•	>: Comparator		der bits ⁽²⁾			
	111 = Divide-l	•					
	110 = Divide-l	by-7					
	101 = Divide-l						
	100 = Divide-l 011 = Divide-l						
	010 = Divide-l						
	001 = Divide-l	by-2					
	000 = 1x						
Note 1: Th	ese bits should	only be change	d when DACON	l = 0 to avoid	d unpredictable l	behavior.	
		• •			SEL<1:0>, and t		2.

REGISTER 14-1: DACCTRL1L: DAC CONTROL 1 LOW REGISTER

- 3: Clock source and dividers should yield an effective DAC clock input of 500 MHz.

20.2 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATL/H registers. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data registers before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME < 15:0 > = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 > \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x Prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,									
	the value written to SYNCMIN<15:0>									
	must be less than the value written to									
	SYNCMAX<15:0>.									

20.2.1 RECEIVE MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATL/H registers after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾		_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	OPSSRC: Ou	itput Postscaler	Source Sele	ct bit ⁽¹⁾						
				er output events	6					
		ostscaler scales		terrupt events						
bit 14		etrigger Enable l se can be retrigg		DICEN hit - 1						
				en TRIGEN bit =	• 1					
bit 13-12		ted: Read as 'o								
bit 11-8	OPS3<3:0>:	CCPx Interrupt	Output Posts	cale Select bits ^{(;}	3)					
	1111 = Interrupt every 16th time base period match									
		upt every 15th t	ime base per	iod match						
	 0100 = Intern	upt every 5th tir	ne base peric	d match						
	0011 = Interr	upt every 4th tir	ne base peric	d match or 4th i	• •					
				d match or 3rd i						
				od match or 2nd od match or inpu						
bit 7		Px Trigger Enal	-							
		peration of time		ed						
	0 = Trigger op	peration of time	base is disab	led						
bit 6		One-Shot Trigge								
		t Trigger mode t Trigger mode		gger duration is	set by OSCN	Γ<2:0>				
bit 5		CPx Clock Sele								
bit o				dule synchroniza	ation output sid	nal				
				gnal is the Time						
bit 4-0	SYNC<4:0>:	CCPx Synchro	nization Sourc	ce Select bits						
	See Table 22-	-5 for the definit	ion of inputs.							
Note 1: Th	is control bit ha	as no function ir	Input Captur	e modes.						
		as no function w								
3 : Ou	tout postscale	settinas. from 1:	5 to 1:16 (010	00-1111), will re	sult in a FIFO I	ouffer overflow f	for			

REGISTER 22-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

3: Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

NOTES:

REGISTER 28-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUN	ER<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	ented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ired	x = Bit is unk	nown

bit 15-0 COUNTER<15:0>: Read Current Contents of Lower DMT Counter bits

REGISTER 28-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplem	ented bit, reac	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown				

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

REGISTER 28-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	id as '0'		
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 28-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<23:16>			
bit 7						bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = E		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

29.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the regulators can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) bit (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) bit can be set to keep the regulators active during Sleep mode. The available Low-Power Sleep modes are shown in Table 29-1. Additional regulator information is available in **Section 30.4 "On-Chip Voltage Regulators"**.

Relative Power	LPWREN	VREGS	MODE
Highest	0	1	Full power, active
_	0	0	Full power, standby
_	1 (1)	1	Low power, active
Lowest	1 (1)	0	Low power, standby

TABLE 29-1: LOW-POWER SLEEP MODES

Note 1: Low-Power modes, when LPWREN = 1, can only be used in the industrial temperature range.

29.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 29.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON<13>).

29.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
61	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
6	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

CPU2	29
Addressing Modes2	29
Control Registers	64
Data Space Addressing2	29
Instruction Set2	29
Registers 2	29
Resources	3
CRC	
Control Registers47	'4
Current Bias Generator	
Control Registers47	'8
Current Bias Generator (CBG)47	7
Current Bias Generator. See CBG.	
Customer Change Notification Service61	5
Customer Notification Service	5
Customer Support61	5
Cyclic Redundancy Check. See CRC.	

D

Data Address Space	43
Memory Map for dsPIC33CK128MPX0X Devices	46
Memory Map for dsPIC33CK256MP508 Devices	45
Memory Map for dsPIC33CK64MPX0X and	
dsPIC33CK32MPX0X Devices	47
Near Data Space	44
Organization, Alignment	
SFR Space	44
Width	43
Data Space	
Extended X	68
Paged Data Memory Space (figure)	66
Paged Memory Scheme	
DC Characteristics	
Operating MIPS vs. Voltage	546
Deadman Timer (DMT)	485
Control Registers	486
Deadman Timer. See DMT.	
Demo/Development Boards, Evaluation and	
Starter Kits	544
Development Support	541
Device Calibration	522
and Identification	522
Device Overview	17
Device Programmer	
MPLAB PM3	543
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	211
Control Registers	207
Peripheral Module Disable (PMD)	207
Summary of Operations	205
Types of Data Transfers	
Typical Setup	207
Doze Mode	
DSP Engine	38
Dual Watchdog Timer (Dual WDT)	526
3 ()	

Е

ECC	
Control Registers	
Electrical Characteristics	545
AC	
ADC Delta Current	
ADC Specifications	
APLL Delta Current	552

APLL Timing Specifications	559
Comparator + DAC Delta Current	
Constant-Current Source Specifications	
DACx Output (DACOUT1 Pin) Specifications	579
DACx Specifications	
Doze Current (IDOZE)	
External Clock Requirements	
High-Speed Analog Comparator Specifications	
High-Speed PWMx Timing Requirements	
I/O Pin Input Injection Current Specifications	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
I/O Timing Requirements	
I2Cx Bus Data Timing Requirements	501
÷ .	E70
(Master Mode)	5/3
I2Cx Bus Data Timing Requirements	
(Slave Mode)	
Idle Current (IDLE)	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Op Amp Delta Current	
Operating Current (IDD)	
Operating Voltage Specifications	
Operational Amplifier Specifications	
PLL Timing Specifications	
Power-Down Current (IPD)	
Program Memory	
PWM Delta Current	
Reset, WDT, OST, PWRT Timing Requirements	562
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Timing Requirements	567
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Timing Requirements	566
SPIx Master Mode (Half-Duplex, Transmit Only)	
Timing Requirements	565
SPIx Maximum Data/Clock Rate Summary	564
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 0) Timing Requirements	569
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0) Timing Requirements	571
UARTx I/O Timing Requirements	
Watchdog Timer Delta Current (∆IwDT)	
Equations	
AFPLLO Calculation	184
AFvco Calculation	
FPLLO Calculation	
Frame Time Calculations	
Fvco Calculation	
I ² C Baud Rate Reload Calculation	
Relationship Between Device and	000
SPIx Clock Speed	300
SYNCMINX and SYNCMAXX Calculations	
Tick Period Calculation	
Errata	
Error Correcting Code (ECC)	
Fault Injection	
	19
F	
Flash Program Memory	

F

77
83
81
505