

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	29
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp503t-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Function	Pin #	Function
1	RP46/PWM1H/PMD5/RB14	33	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47/PWM1L/PMD6/RB15	34	PGD2/OA2IN-/AN8/ RP35 /RB3
3	RP60/PWM8H/PMD7/RC12	35	PGC2/OA2IN+/ RP36 /RB4
4	RP61/PWM8L/PMA5/RC13	36	RP56/ASDA1/SCK2/RC8
5	RP62/PWM6H/PMA4/RC14	37	RP57/ASCL1/SDI2/RC9
6	RP63/PWM6L/PMA3/RC15	38	RP73/PCI20/RD9
7	MCLR	39	RP72/SDO2/PCI19/RD8
8	RP79/PCI22/PMA2/RD15	40	Vss
9	Vss	41	VDD
10	Vdd	42	RP71/PMD15/RD7
11	RP78/PCI21/RD14	43	RP70/PMD14/RD6
12	ANN2/ RP77 /RD13	44	RP69/PMA15/PMCS2/RD5
13	AN12/ANN0/ RP48 /RC0	45	PGD3/RP37/SDA2/PMA14/PMCS1/PSCS/RB5
14	OA1OUT/AN0/CMP1A/IBIAS0/RA0	46	PGC3/ RP38 /SCL2/RB6
15	OA1IN-/ANA1/RA1	47	TDO/AN2/CMP3A/ RP39 /SDA3/RB7
16	OA1IN+/AN9/PMA6/RA2	48	PGD1/AN10/ RP40 /SCL1/RB8
17	DACOUT1/AN3/CMP1C/RA3	49	PGC1/AN11/ RP41 /SDA1/RB9
18	OA3OUT/AN4/CMP3B/IBIAS3/RA4	50	RP52/PWM5H/ASDA2/RC4
19	AVdd	51	RP53/PWM5L/ASCL2/PMWR/PMENB/PSWR/RC5
20	AVss	52	RP58/PWM7H/PMRD/PMWR/PSRD/RC10
21	RP76 /RD12	53	RP59/PWM7L/RC11
22	OA3IN-/AN13/CMP1B/ISRC0/RP49/PMA7/RC1	54	RP68/ASDA3/RD4
23	OA3IN+/AN14/CMP2B/ISRC1/RP50/PMD13/PMA13/RC2	55	RP67/ASCL3/RD3
24	AN17/ANN1/IBIAS1/RP54/PMD12/PMA12/RC6	56	Vss
25	VDD	57	VDD
26	Vss	58	RP66/RD2
27	AN15/CMP2A/IBIAS2/RP51/PMD11/PMA11/RC3	59	RP65/PWM4H/RD1
28	OSCI/CLKI/AN5/RP32/PMD10/PMA10/RB0	60	RP64/PWM4L/PMD0/RD0
29	OSCO/CLKO/AN6/RP33/PMA1/PMALH/PSA1/RB1	61	TMS/ RP42 /PWM3H/PMD1/RB10
30	AN19/CMP2C/RP75/PMA0/PMALL/PSA0/RD11	62	TCK/ RP43 /PWM3L/PMD2/RB11
31	AN18/CMP3C/ISRC3/RP74/PMD9/PMA9/RD10	63	TDI/ RP44 /PWM2H/PMD3/RB12
32	AN16/ISRC2/ RP55 /PMD8/PMA8/RC7	64	RP45/PWM2L/PMD4/RB13

TABLE 7: 64-PIN TQFP, QFN

Note: RPn represents remappable peripheral functions.

2.6 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 9.0 "Oscillator with High-Frequency PLL") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

FIGURE 2-4: INTERLEAVED PFC

2.8 Targeted Applications

- Power Factor Correction (PFC):
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters:
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
- Resonant Converters
- · DC/AC:
 - Half/Full-Bridge Inverter
 - Resonant Inverter
- Motor Control
 - BLDC
 - PMSM
 - SR
 - ACIM

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CAN			C1TSCONL	5D4	0000000000	C1RXOVIFH	5EA	000000000000000000
C1CONL	5C0	00011101100000	C1TSCONH	5D6	000	C1TXATIFL	5EC	000000000000000000
C1CONH	5C2	0000010010011000	C1VECL	5D8	00000-1000000	C1TXATIFH	5EE	000000000000000000
C1NBTCFGL	5C4	00001111-0001111	C1VECH	5DA	11000000-1000000	C1TXREQL	5F0	0000000000000000000
C1NBTCFGH	5C6	000000000111110	C1INTL	5DC	00000000000	C1TXREQH	5F2	000000000000000000000000000000000000000
C1DBTCFGL	5C8	00110011	C1INTH	5DE	00000000000	C1TRECL	5F4	000000000000000000
C1DBTCFGH	5CA	000000001110	C1RXIFL	5E0	00000000000000000	C1TRECH	5F6	100000
C1TDCL	5CC	00010000000000	C1RXIFH	5E2	00000000000000000	C1BDIAG0L	5F8	000000000000000000000000000000000000000
C1TDCH	5CE	10	C1TXIFL	5E4	0000000000000000-	C1BDIAG0H	5FA	000000000000000000000000000000000000000
C1TBCL	5D0	000000000000000000	C1TXIFH	5E6	000000000000000000	C1BDIAG1L	5FC	0000000000000000000
C1TBCH	5D2	000000000000000000000000000000000000000	C1RXOVIFL	5E8	0000000000000000-	C1BDIAG1H	5FE	00000-000-000000

TABLE 4-7: SFR BLOCK 500h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

TABLE 7-4: INTERRUPT PRIORITY REGISTER
--

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC0	840h	—	CNBIP2	CNBIP1	CNBIP0	_	CNAIP2	CNAIP1	CNAIP0	_	T1IP2	T1IP1	T1IP0	_	INT0IP2	INT0IP1	INT0IP0
IPC1	842h	_	CCT1IP2	CCT1IP1	CCT1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	_	_	_	_	_	DMA0IP2	DMA0IP1	DMA0IP0
IPC2	844h	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	_	DMA1IP2	DMA1IP1	DMA1IP0
IPC3	846h	—	INT1IP2	INT1IP1	INT1IP0	_	NVMIP2	NVMIP1	NVMIP0	_	ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	_	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	848h	—	CNCIP2	CNCIP1	CNCIP0	—	DMA2IP2	DMA2IP1	DMA2IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	84Ah	_	CCP2IP2	CCP2IP1	CCP2IP0		_	—	_	_	DMA3IP2	DMA3IP1	DMA3IP20	_	INT2IP2	INT2IP1	INT2IP0
IPC6	84Ch	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT3IP2	INT3IP1	INT3IP0	_	C1IP2	C1IP1	C1IP0	_	CCT2IP2	CCT2IP1	CCT2IP0
IPC7	84Eh	—	C1RXIP2	C1RXIP1	C1RXIP0	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	-	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	U2TXIP2	U2TXIP1	U2TXIP0
IPC8	850h	—	CCP3IP2	CCP3IP1	CCP3IP0	_	_	_	_	-	_	_	_	_	_	_	_
IPC9	852h	—	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	-	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	CCT3IP2	CCT3IP1	CCT3IP0
IPC10	854h	—	CCP5IP2	CCP5IP1	CCP5IP0	_	_	-	_	—	CCT4IP2	CCT4IP1	CCT4IP0		CCP4IP2	CCP4IP1	CCP4IP0
IPC11	856h	—	CCT6IP2	CCT6IP1	CCT6IP0	_	CCP6IP2	CCP6IP1	CCP6IP0	-	DMTIP2	DMTIP1	DMTIP0	_	CCT5IP2	CCT5IP1	CCT5IP0
IPC12	858h	—	CRCIP2	CRCIP1	CRCIP0	_	U2EIP2	U2EIP1	U2EIP0	—	U1EIP2	U1EIP1	U1EIP0		QEI1IP2	QEI1IP1	QEI1IP0
IPC13	85Ah	—	—	_	_	_	QEI2IP2	QEI2IP1	QEI2IP0	—	-	—	_		C1TXIP2	C1TXIP1	C1TXIP0
IPC14	85Ch	—	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	_	U3TXIP2	U3TXIP1	U3TXIP1	—	U3RXIP2	U3RXIP1	U3RXIP0	-	U3EIP2	U3EIP1	U3EIP0
IPC15	85Eh	—	PTGSTEPIP2	PTGSTEPIP1	PTGSTEPIP0	_	JTAGIP2	JTAGIP1	JTAGIP0	—	ICDIP2	ICDIP1	ICDIP0	-	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0
IPC16	860h	—	PWM1IP2	PWM1IP1	PWM1IP0	_			_	—	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	-	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
IPC17	862h	—	PWM5IP2	PWM5IP1	PWM5IP0	_	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	-	PWM2IP2	PWM2IP1	PWM2IP0
IPC18	864h	—	CNDIP2	CNDIP1	CNDIP0	_	PWM8IP2	PWM8IP1	PWM8IP0	—	PWM7IP2	PWM7IP1	PWM7IP0	-	PWM6IP2	PWM6IP1	PWM6IP0
IPC19	866h	—	CMP3IP2	CMP3IP1	CMP3IP0	_	CMP2IP2	CMP2IP1	CMP2IP0	—	CMP1IP2	CMP1IP1	CMP1IP0	-	CNEIP2	CNEIP1	CNEIP0
IPC20	868h	—	PTG1IP2	PTG1IP1	PTG1IP0	_	PTG0IP2	PTG0IP1	PTG0IP0	—	PTGWDTIP2	PTGWDTIP1	PTGWDTIP0	-	—		_
IPC21	86Ah	—	SENT1EIP2	SENT1EIP1	SENT1EIP0	_	SENT1IP2	SENT1IP1	SENT1IP0	—	PTG3IP2	PTG3IP1	PTG3IP0	-	PTG2IP2	PTG2IP1	PTG2IP0
IPC22	86Ch	—	ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	_	ADCIP2	ADCIP1	ADCIP0	—	SENT2EIP2	SENT2EIP1	SENT2EIP0	-	SENT2IP2	SENT2IP1	SENT2IP0
IPC23	86Eh	—	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	_	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	—	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	-	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0
IPC24	870h	—	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	_	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0	—	ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	-	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0
IPC25	872h	—	ADCAN12IP2	ADCAN12IP1	ADCAN12IP0	_	ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	-	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0	_	ADCAN9IP2	ADCAN9IP1	ADCAN9IP0
IPC26	874h	—	ADCAN16IP2	ADCAN16IP2	ADCAN16IP2	_	ADCAN15IP2	ADCAN15IP1	ADCAN15IP0	—	ADCAN14IP2	ADCAN14IP1	ADCAN14IP0	-	ADCAN13IP2	ADCAN13IP1	ADCAN13IP0
IPC27	876h	—	ADCAN20IP2	ADCAN20IP1	ADCAN20IP0	_	ADCAN19IP2	ADCAN19IP1	ADCAN19IP0	-	ADCAN18IP2	ADCAN18IP1	ADCAN18IP0	_	ADCAN17IP2	ADCAN17IP1	ADCAN17IP0
IPC28	878h	—	ADFLTIP2	ADFLTIP1	ADFLTIP0	_	ADCAN23IP2	ADCAN23IP1	ADCAN22IP0	-	ADCAN22IP2	ADCAN22IP1	ADCAN22IP0	_	ADCAN21IP2	ADCAN21IP1	ADCAN21IP0
IPC29	87Ah	—	ADCMP3IP2	ADCMP3IP1	ADCMP3IP0	_	ADCMP2IP2	ADCMP2IP1	ADCMP2IP0	-	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	ADCMP0IP2	ADCMP0IP1	ADCMP0IP0
IPC30	87Ch	_	ADFLTR3IP2	ADFLTR3IP1	ADFLTR3IP0		ADFLTR2IP2	ADFLTR2IP1	ADFLTR2IP0	_	ADFLTR1IP2	ADFLTR1IP1	ADFLTR1IP0	_	ADFLTR0IP2	ADFLTR0IP1	ADFLTR0IP0
IPC31	87Eh	—	SPI2GIP0	SPI2GIP1	SPI2GIP0	—	SPI1GIP2	SPI1GIP1	SPI1GIP0	_	CLC2PIP2	CLC2PIP1	CLC2PIP0	_	CLC1PIP2	CLC1PIP1	CLC1PIP0
IPC32	880h	—	_	—	—	—	—	—	_	_	—	—	—	_	SPI3GIP2	SPI3GIP1	SPI3GIP0
IPC33	882h	—	_	—	_	—	_	_	_	_	_	—	—	_	—	—	—
IPC34	884h	—	_	—	_	—	_	_	_	_	_	—	—	_	—	—	—

8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK256MP508 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

REGISTER 11-21: C1TXIFH: CAN TRANSMIT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	<31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 TFIF<31:16>: Unimplemented

Note 1: C1TXIFH: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).

REGISTER 11-22: C1TXIFL: CAN TRANSMIT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF∙	<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn

bit 15-8 TFIF<15:8>: Unimplemented

bit 7-0 **TFIF<7:0>:** Transmit FIFO/TXQ Interrupt Pending bits⁽²⁾

1 = One or more enabled transmit FIFO/TXQ interrupts are pending

0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: C1TXIFL: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).
 2: TFIF0 is for the transmit queue.

REGISTER 11-33: C1FIFOCONLx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) LOW

U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0
	_	_			FRESET	TXREQ	UINC
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXEN	RTREN	RXTSEN ⁽¹⁾	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNIE
bit 7							bit 0
Legend:		S = Settable bit		HC = Hardwa	are Clearable bi	it	
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '0'					
bit 10	FRESET: FIF	O Reset bit					
	1 = FIFO will	be reset when	bit is set, cl	eared by hard	ware when FIF	O is reset; use	er should poll
	whether t	this bit is clear be	efore taking a	any action			
hit Q		sage Send Pegu	est hit				
Dit 9	TXEN = 1 (EII	FO configured as	s a transmit F				
	1 = Requests	s sending a mes	sage; the bit	will automatica	ally clear when	all the messag	les queued in
	the FIFO	are successfully	sent		2	C	•
	0 = Clearing	the bit to '0' while	e set ('1') wil	l request a me	ssage abort		
	TXEN = 0 (FI	FO configured as	s a receive F	<u>IFO):</u>			
hit 9		o ellect.					
DILO	TXEN = 1 (EII		s a transmit F				
	When this bit	is set, the FIFO	head will incr	rement by a sir	ngle message.		
	<u>TXEN = 0 (FI</u>	FO configured as	s a receive F	IFO):			
	When this bit	is set, the FIFO	tail will increr	ment by a singl	e message.		
bit 7	TXEN: TX/RX	Buffer Selectior	n bit				
	1 = Transmits	message object					
h it C		message object		bla bit			
DILO		Premote Transmit	in received		sot		
	0 = When a R	Remote Transmit	is received.	TXREQ will be	unaffected		
bit 5	RXTSEN: Re	ceived Message	Timestamp I	Enable bit ⁽¹⁾			
	1 = Captures	timestamp in rec	eived messa	age object in R	AM		
	0 = Does not	capture timestan	np	0			
bit 4	TXATIE: Tran	ismit Attempts Ex	khausted Inte	errupt Enable b	bit		
	1 = Enables i	nterrupt					
	0 = Disables i						
bit 3	RXOVIE: Ove	erflow Interrupt E	nable bit				
	1 = Interrupt i	s enabled for ove	erflow event				
Note 1: This b	Note 1: This bit can only be modified in Configuration mode (OPMOD<2:0> = 100).						

U-0	R/W-0						
_	MIDE	MSID11	MEID17	MEID16	MEID15	MEID14	MEID13
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MEID12	MEID11	MEID10	MEID9	MEID8	MEID7	MEID6	MEID5
bit 7			•	•			bit 0
Logondu							

REGISTER 11-54: C1MASKxH: CAN MASK REGISTER x HIGH (x = 0 TO 15)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 MIDE: Identifier Receive Mode bit

- 1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in the filter
- 0 = Matches either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))

bit 13 MSID11: Standard Identifier Mask bit

bit 12-0 MEID<17:5>: Extended Identifier Mask bits

In DeviceNet[™] mode, these are the mask bits for the first 2 data bytes.

REGISTER 11-55: C1MASKxL: CAN MASK REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MEID4	MEID3	MEID2	MEID1	MEID0	MSID10	MSID9	MSID8
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MSID7	MSID6	MSID5	MSID4	MSID3	MSID2	MSID1	MSID0
bit 7		•					bit 0
Legend:							

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 MEID<4:0>: Extended Identifier Mask bits

In DeviceNet[™] mode, these are the mask bits for the first 2 data bytes.

bit 10-0 MSID<10:0>: Standard Identifier Mask bits

REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

bit 4-0 PSS<4:0>: PCI Source Selection bits 111111 = CLC1 11110 = Reserved 11101 = Comparator 3 output 11100 = Comparator 2 output 11011 = Comparator 1 output 11010 = PWM Event D 11001 = PWM Event C 11000 = PWM Event B 10111 = PWM Event A 10110 = Device pin, PCI<22> 10101 = Device pin, PCI<21> 10100 = Device pin, PCI<20> 10011 = Device pin, PCI<19> 10010 = RPn input, PCI18R 10001 = RPn input, PCI17R 10000 = RPn input, PCI16R 01111 = RPn input, PCI15R 01110 = RPn input, PCI14R 01101 = RPn input, PCI13R 01100 = RPn input, PCI12R 01011 = RPn input, PCI11R 01010 = RPn input, PCI10R 01001 = RPn input, PCI9R 01000 = RPn input, PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Internally connected to Combo Trigger B 00010 = Internally connected to Combo Trigger A 00001 = Internally connected to the output of PWMPCI<2:0> MUX 00000 = Tied to '0'

REGISTER 13-8:	ADCON4H:	ADC CONTROL	REGISTER 4 HIGH
----------------	----------	-------------	------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_	C1CHS1	C1CHS0	C0CHS1	C0CHS0
bit 7							bit 0
Legend:							
R = Readat	ble bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-4	Unimplemer	nted: Read as '0	,				
bit 3-2	C1CHS<1:0>	. Dedicated AD	C Core 1 Inpu	t Channel Sele	ction bits		
	11 = Reserve	ed					
	10 = Reserve	ed					
	01 = ANA1						
	00 = AN1						

bit 1-0 COCHS<1:0>: Dedicated ADC Core 0 Input Channel Selection bits

11 = Reserved

10 = Reserved

01 = ANA0

00 **= AN0**

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_			_		_			
bit 15			l				bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
	_	TXRPT1	TXRPT0	CONV	T0PD	PRTCL	—		
bit 7							bit 0		
Legend:									
R = Readab	ble bit	W = Writable	bit		nented bit, read				
-n = Value a	at POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nown		
bit 1E C	Unimplement	adı Dood oo fr	, ,						
	Unimplement			.,					
bit 5-4	TXRPT<1:0>:	Iransmit Repe	eat Selection b	its					
	11 = Retransn	nit the error by	e four times						
	10 = Retransn	nit the error by	te three times						
	00 = Retransn	nit the error by	e once						
bit 3	CONV: Logic	Convention Se	lection bit						
	1 = Inverse logic convention								
	0 = Direct logi	c convention							
bit 2	TOPD: Pull-Do	own Duration fo	or T = 0 Error H	landling bit					
	1 = 2 ETU								
	0 = 1 ETU								
bit 1	PRTCL: Smar	t Card Protoco	I Selection bit						
	1 = T = 1								
	0 = T = 0								
bit 0	Unimplement	ted: Read as 'o)'						

REGISTER 16-15: UxSCCON: UARTx SMART CARD CONFIGURATION REGISTER

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the Slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6		CKP: Clock Polarity Select bit
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode 0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3		DISSCK: Disable SCKx Output Port bit
		 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0		ENHBUF: Enhanced Buffer Enable bit
		 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note	1:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1, SSEN is not used.

- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 19-2: PMCONH: PARALLEL MASTER PORT CONTROL HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	—	—	—		
bit 15							bit 8	
R/W/HC-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
RDSTART ⁽¹⁾			_			DUALBUF		
bit 7							bit 0	
Legend:		HC = Hardware	e Clearable bit					
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	Unimplement	ted: Read as '0	,					
bit 7	RDSTART: St	art a Read on P	MP Bus bit ⁽¹⁾					
	 1 = Starts a read cycle on the PMP bus 0 = No effect 							
bit 6-2	Unimplement	ted: Read as '0	,					
bit 1	DUALBUF: PMP Dual Read/Write Buffers Enable bit (valid in Master mode only)							
	 1 = PMP uses separate registers for reads and writes (PMRADDR, PMDINx, PMWADDR, PMDOUTx) 0 = PMP uses legacy registers (PMADDR, PMDINx) 							
bit 0	Unimplemented: Read as '0'							

Note 1: This bit is cleared by HW at the end of the read cycle when BUSY (PMMODE<15>) = 0.

20.2 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATL/H registers. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data registers before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$

FRAMETIME < 15:0 > = TTICK/TFRAME

SyncCount = 8 x FRCV x TTICK

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX<15:0> = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$

 $FRAMETIME < 15:0 > \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x Prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN<15:0> = 76.

Note:	To ensure a Sync period can be identified,					
	the value written to SYNCMIN<15:0>					
	must be less than the value written to SYNCMAX<15:0>.					

20.2.1 RECEIVE MODE CONFIGURATION

20.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATL/H registers after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
	_		—	_	—	—	_		
oit 23							bit 16		
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1		
_		CTXT4<2:0>		_		CTXT3<2:0>			
bit 15							bit 8		
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1		
		CTXT2<2:0>		_		CTXT1<2:0>			
bit 7							bit C		
Legend:		PO = Program	n Once bit						
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	 111 = Not assigned 110 = Alternate Register Set #4 is assigned to IPL Level 7 101 = Alternate Register Set #4 is assigned to IPL Level 6 100 = Alternate Register Set #4 is assigned to IPL Level 5 011 = Alternate Register Set #4 is assigned to IPL Level 4 010 = Alternate Register Set #4 is assigned to IPL Level 3 001 = Alternate Register Set #4 is assigned to IPL Level 2 								
bit 11	Unimpleme	nted: Read as '1	, ,						
bit 10-8	CTXT3<2:0	>: Specifies the A	Alternate Work	king Register Se	et #3 with Inter	rupt Priority Leve	els (IPL) bits		
	111 = Not a: 110 = Altern 101 = Altern 100 = Altern 011 = Altern 010 = Altern 001 = Altern 000 = Altern	111 = Not assigned 110 = Alternate Register Set #3 is assigned to IPL Level 7 101 = Alternate Register Set #3 is assigned to IPL Level 6 100 = Alternate Register Set #3 is assigned to IPL Level 5 011 = Alternate Register Set #3 is assigned to IPL Level 4 010 = Alternate Register Set #3 is assigned to IPL Level 3 001 = Alternate Register Set #3 is assigned to IPL Level 2 000 = Alternate Register Set #3 is assigned to IPL Level 2							
				= = = • • • •					
bit 7	Unimpleme	nted: Read as '1	,						

bit 6-4 CTXT2<2:0>: Specifies the Alternate Working Register Set #2 with Interrupt Priority Levels (IPL) bits

- 111 = Not assigned
 - 110 = Alternate Register Set #2 is assigned to IPL Level 7
 - 101 = Alternate Register Set #2 is assigned to IPL Level 6
 - 100 = Alternate Register Set #2 is assigned to IPL Level 5
 - 011 = Alternate Register Set #2 is assigned to IPL Level 4
 - 010 = Alternate Register Set #2 is assigned to IPL Level 3
 - 001 = Alternate Register Set #2 is assigned to IPL Level 2
 - 000 = Alternate Register Set #2 is assigned to IPL Level 1
- bit 3 Unimplemented: Read as '1'

Base Instr #	Assembly Mnemonic		Assembly Syntax Description		# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
69	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB,
		NEG	f	$f = \overline{f} + 1$	1	1	
		NEG	f.WREG	WRFG = $f + 1$	1	1	
		NEC	I, MILEG	$Wd = \overline{We} + 1$	1	1	
70	NOD	NOD	ws,wa		1	1	None
10	NOP	NOP		No Operation	1	1	None
71	NORM	NORM	Acc Wd	Normalize Accumulator	1	1	N OV Z
72	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	101	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
73	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
74	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
75	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
76	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
77	RESET	RESET		Software Device Reset	1	1	None
78	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA
79	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
80	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
81	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
82	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
83	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
84	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
85	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
86	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
87	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
88	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA.SB.SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

34.2 Package Details

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	MILLIMETERS					
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1		1.25 REF			
Lead Thickness	с	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			4.75	
Optional Center Pad Length	Y2			4.75	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.35	
Contact Pad Length (X28)	Y1			0.80	
Corner Anchor (X4)	X3			1.00	
Corner Anchor (X4)	Y3			1.00	
Corner Anchor Chamfer (X4)	X4			0.35	
Corner Anchor Chamfer (X4)	Y4			0.35	
Contact Pad to Pad (X28)	G1	0.20			
Contact Pad to Center Pad (X28)	G2	0.20			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Number of Pins	N	64					
Pitch	е	0.50 BSC					
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E	9.00 BSC					
Exposed Pad Width	E2	5.30	5.40	5.50			
Overall Length	D	9.00 BSC					
Exposed Pad Length	D2	5.30	5.40	5.50			
Contact Width	b	0.20	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2