

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

RA1 [] RA2 [] 2 RA3 [] 3	28 RA0 27 MCLR 26 RB15
RA3 [] 3 RA4 [] 4 AVDD [] 5 AVss [] 6 VDD [] 7	25 RB14 24 RB13
AVss 6 VDD 7	23 RB12 22 RB11
VDD 7 7 VSS 8 7 RB0 9 8 RB1 10 10	21 RB10 20 VDD 19 VSS
RB1 [10] RB2 [11] RB3 [12]	8 18 RB9 17 RB8
RB4 [13 RB5 [14	16 RB7 15 RB6

TABLE 3: 28-PIN SSOP

Pin #	Function	Pin #	Function
1	OA1IN-/ANA1/RA1	15	PGC3/ RP38 /SCL2/RB6
2	OA1IN+/AN9/RA2	16	TDO/AN2/CMP3A/ RP39 /SDA3/RB7
3	DACOUT1/AN3/CMP1C/RA3	17	PGD1/AN10/ RP40 /SCL1/RB8
4	AN4/CMP3B/IBIAS3/RA4	18	PGC1/AN11/ RP41 /SDA1/RB9
5	AVdd	19	Vss
6	AVss	20	VDD
7	VDD	21	TMS/ RP42 /PWM3H/RB10
8	Vss	22	TCK/ RP43 /PWM3L/RB11
9	OSCI/CLKI/AN5/RP32/RB0	23	TDI/ RP44 /PWM2H/RB12
10	OSCO/CLKO/AN6/RP33/RB1	24	RP45/PWM2L/RB13
11	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/ SCL3/INT0/RB2	25	RP46 /PWM1H/RB14
12	PGD2/OA2IN-/AN8/ RP35 /RB3	26	RP47/PWM1L/RB15
13	PGC2/OA2IN+/ RP36 /RB4	27	MCLR
14	PGD3/ RP37 /SDA2/RB5	28	OA1OUT/AN0/CMP1A/IBIAS0/RA0

Note: RPn represents remappable peripheral functions.

Pin #	Function	Pin #	Function
1	RP46/PWM1H/PMD5/RB14	41	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	AN20/RE0	42	RE8
3	RP47/PWM1L/PMD6/RB15	43	PGD2/OA2IN-/AN8/ RP35 /RB3
4	AN21/RE1	44	RE9
5	RP60/PWM8H/PMD7/RC12	45	PGC2/OA2IN+/ RP36 /RB4
6	RP61/PWM8L/PMA5/RC13	46	RP56/ASDA1/SCK2/RC8
7	RP62/PWM6H/PMA4/RC14	47	RP57/ASCL1/SDI2/RC9
8	RP63/PWM6L/PMA3/RC15	48	RP73/PCI20/RD9
9	MCLR	49	RP72/SDO2/PCI19/RD8
10	RP79/PCI22/PMA2/RD15	50	Vss
11	Vss	51	VDD
12	Vdd	52	RP71/PMD15/RD7
13	RP78/PCI21/RD14	53	RP70/PMD14/RD6
14	ANN2/ RP77 /RD13	54	RP69/PMA15/PMCS2/RD5
15	AN12/ANN0/ RP48 /RC0	55	PGD3/RP37/SDA2/PMA14/PMCS1/PSCS/RB5
16	OA1OUT/AN0/CMP1A/IBIAS0/RA0	56	PGC3/ RP38 /SCL2/RB6
17	AN22/RE2	57	RE10
18	OA1IN-/ANA1/RA1	58	TDO/AN2/CMP3A/ RP39 /SDA3/RB7
19	AN23/RE3	59	RE11
20	OA1IN+/AN9/PMA6/RA2	60	PGD1/AN10/ RP40 /SCL1/RB8
21	DACOUT1/AN3/CMP1C/RA3	61	PGC1/AN11/ RP41 /SDA1/RB9
22	RE4	62	RE12
23	OA3OUT/AN4/CMP3B/IBIAS3/RA4	63	RP52/PWM5H/ASDA2/RC4
24	RE5	64	RE13
25	AVdd	65	RP53/PWM5L/ASCL2/PMWR/PMENB/PSWR/RC5
26	AVss	66	RP58/PWM7H/PMRD/PMWR/PSRD/RC10
27	RP76/RD12	67	RP59/PWM7L/RC11
28	OA3IN-/AN13/CMP1B/ISRC0/RP49/PMA7/RC1	68	RP68/ASDA3/RD4
29	OA3IN+/AN14/CMP2B/ISRC1/RP50/PMD13/PMA13/RC2	69	RP67/ASCL3/RD3
30	AN17/ANN1/IBIAS1/RP54/PMD12/PMA12/RC6	70	Vss
31	VDD	71	Vdd
32	Vss	72	RP66/RD2
33	AN15/CMP2A/IBIAS2/RP51/PMD11/PMA11/RC3	73	RP65/PWM4H/RD1
34	OSCI/CLKI/AN5/RP32/PMD10/PMA10/RB0	74	RP64/PWM4L/PMD0/RD0
35	OSCO/CLKO/AN6/RP33/PMA1/PMALH/PSA1/RB1	75	TMS/RP42/PWM3H/PMD1/RB10
36	AN19/CMP2C/RP75/PMA0/PMALL/PSA0/RD11	76	TCK/RP43/PWM3L/PMD2/RB11
37	RE6	77	RE14
38	AN18/CMP3C/ISRC3/RP74/PMD9/PMA9/RD10	78	TDI/ RP44 /PWM2H/PMD3/RB12
39	RE7	79	RE15
40	AN16/ISRC2/RP55/PMD8/PMA8/RC7	80	RP45/PWM2L/PMD4/RB13

TABLE 8:	80-PIN TQFP
----------	-------------

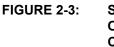
Note: RPn represents remappable peripheral functions.

2.4 ICSP Pins

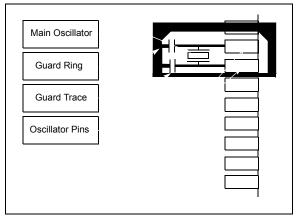
The PGCx and PGDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to PICkit[™] 3, MPLAB[®] ICD 3 or MPLAB REAL ICE[™] emulator.

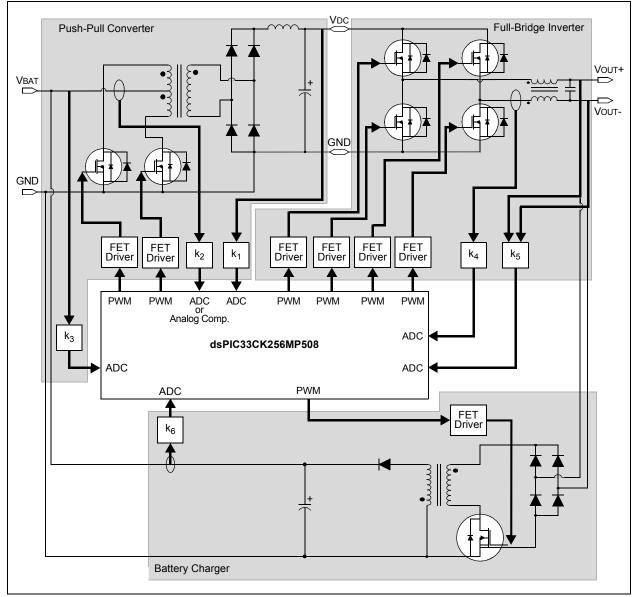

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE emulator connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE[™] In-Circuit Emulator" (poster) (DS51749)


2.5 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator (POSC) and a low-frequency Secondary Oscillator (SOSC). For details, see Section 9.2 "Primary Oscillator (POSC)".

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.



: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

dsPIC33CK256MP508 FAMILY

FIGURE 2-6: OFF-LINE UPS

4.4.3.3 Modulo Addressing Applicability

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.4.4 BIT-REVERSED ADDRESSING

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.4.4.1 Bit-Reversed Addressing Implementation

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- · The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

v a a	All bit-reversed EA calculations assume vord-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.
-------------	--

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

TABLE 8-12: PORTE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSLE	_	—	—	—	—	_	—	_	_	—	—	_	_	_	_	_
TRISE	TRISE<15:0>															
PORTE		RE<15:0>														
LATE								LATE<15:	0>							
ODCE	ODCE<15:0>															
CNPUE							(CNPUE<1	5:0>							
CNPDE							(CNPDE<1	5:0>							
CNCONE	ON	ON CNSTYLE										_				
CNEN0E							C	NEN0E<1	5:0>							
CNSTATE	CNSTATE<15:0>															
CNEN1E							C	NEN1E<1	5:0>							
CNFE								CNFE<15	0>							

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP76R5	RP76R4	RP76R3	RP76R2	RP76R1	RP76R0
bit 7							bit 0

REGISTER 8-76: RPOR22: PERIPHERAL PIN SELECT OUTPUT REGISTER 22

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP77R<5:0>: Peripheral Output Function is Assigned to RP77 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP76R<5:0>: Peripheral Output Function is Assigned to RP76 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-77: RPOR23: PERIPHERAL PIN SELECT OUTPUT REGISTER 23

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— — RP79R5		RP79R4	RP79R3	RP79R2	RP79R1	RP79R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP78R5	RP78R4	RP78R3	RP78R2	RP78R1	RP78R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP79R<5:0>:** Peripheral Output Function is Assigned to RP79 Output Pin bits
(see Table 8-7 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP78R<5:0>:** Peripheral Output Function is Assigned to RP78 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	R/W-0						
	MIDE	MSID11	MEID17	MEID16	MEID15	MEID14	MEID13
bit 15							bit 8
R/W-0							
MEID12	MEID11	MEID10	MEID9	MEID8	MEID7	MEID6	MEID5
bit 7			•	•			bit 0
Logond							

REGISTER 11-54: C1MASKxH: CAN MASK REGISTER x HIGH (x = 0 TO 15)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 MIDE: Identifier Receive Mode bit

- 1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in the filter
- Matches either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
- bit 13 **MSID11:** Standard Identifier Mask bit

bit 12-0 **MEID<17:5>:** Extended Identifier Mask

12-0 **MEID<17:5>:** Extended Identifier Mask bits In DeviceNet[™] mode, these are the mask bits for the first 2 data bytes.

REGISTER 11-55: C1MASKxL: CAN MASK REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MEID4	MEID3	MEID2	MEID1	MEID0	MSID10	MSID9	MSID8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MSID7	MSID6	MSID5	MSID4	MSID3	MSID2	MSID1	MSID0
bit 7							bit 0
Leaend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 MEID<4:0>: Extended Identifier Mask bits

In DeviceNet[™] mode, these are the mask bits for the first 2 data bytes.

bit 10-0 MSID<10:0>: Standard Identifier Mask bits

REGISTER 12-13: F	PGxCONH: PWM GENERATOR x CONTROL REGISTER H	┨GH
-------------------	---	-----

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
MDCSE	L MPERSEL	MPHSEL	_	MSTEN	UPMOD2	UPMOD1	UPMOD0
bit 15	·						bit 8
	DAMA				D 444 0	DAMA	DAMA
r-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	TRGMOD	—		SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^(1,2,3)
bit 7							bit
Legend:		r = Reserved	bit				
R = Read	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkne	own
bit 15		laster Duty Cy	-				
		enerator uses	•				
L:1 4 4		enerator uses	-				
bit 14		Master Period	•				
		enerator uses enerator uses					
bit 13		laster Phase F		•			
		enerator uses	-				
		enerator uses		0			
bit 12	Unimpleme	nted: Read as	· '0'				
bit 11	MSTEN: Ma	ster Update E	nable bit				
			dcasts softw	/are set/clear of t	he UPDREQ stat	us bit and EOC	signal to othe
	-	enerators	not broade		atatua hitatata a		
h:+ 40 0					status bit state o	EOC signal	
bit 10-8		ed immediate u		ode Selection bit	5		
			•	is soon as possib	le, when a Maste	r update reques	t is received.
			est will be tra	ansmitted if MSTE	EN = 1 and UPDA	TE = 1 for the re	equesting PWI
		erator.					
		ed SOC update registers at st		cycle if a Master	update request	is received A	master undat
					PDATE = 1 for the		
		ediate update					
					ble, if UPDATE = $(UPDATE = 1)$		
				update occurs.	(UPDATE = 1).	THE OFDATE S	latus dit will d
	000 = SOC						
		registers at sta natically after t			ATE = 1. The UP	DATE status bit	will be cleare
bit 7		Maintain as '0'					
Note 1:	The PCI selecte	ed Sync signal	is always a	vailable to be OR	d with the select	ed SOC signal (per the
	SOCS<3:0> bits	s if the PCI Sy	nc function i	s enabled.			
2:		•		•	e from the same of		
	Generator. If no synchronized to			-	CI Sync logic so t	ne trigger signa	ii may be
3.	-				4 and PG5-PG8	if available An	vacorator

3: PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

bit 4-0 PSS<4:0>: PCI Source Selection bits 111111 = CLC1 11110 = Reserved 11101 = Comparator 3 output 11100 = Comparator 2 output 11011 = Comparator 1 output 11010 = PWM Event D 11001 = PWM Event C 11000 = PWM Event B 10111 = PWM Event A 10110 = Device pin, PCI<22> 10101 = Device pin, PCI<21> 10100 = Device pin, PCI<20> 10011 = Device pin, PCI<19> 10010 = RPn input, PCI18R 10001 = RPn input, PCI17R 10000 = RPn input, PCI16R 01111 = RPn input, PCI15R 01110 = RPn input, PCI14R 01101 = RPn input, PCI13R 01100 = RPn input, PCI12R 01011 = RPn input, PCI11R 01010 = RPn input, PCI10R 01001 = RPn input, PCI9R 01000 = RPn input, PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Internally connected to Combo Trigger B 00010 = Internally connected to Combo Trigger A 00001 = Internally connected to the output of PWMPCI<2:0> MUX 00000 = Tied to '0'

REGISTER 13-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	

-n = Value at POR (1°) = Bit is set (0°) = Bit is cleared x = Bit is unknown

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 13-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	_	—	—	EIEN<	25:24>
bit 15				• •			bit 8
							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 EIEN<25:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 16-2: UxMODEH: UARTx CONFIGURATION REGISTER HIGH (CONTINUED)

- bit 2 UTXINV: UART Transmit Polarity bit
 - 1 = Inverts TX polarity; TX is low in Idle state
 - 0 = Output data is not inverted; TX output is high in Idle state
- bit 1-0 **FLO<1:0>:** Flow Control Enable bits (only valid when MOD<3:0> = 0xxx)

11 = Reserved

- 10 = RTS-DSR (for TX side)/CTS-DTR (for RX side) hardware flow control
- 01 = XON/XOFF software flow control
- 00 = Flow control off

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (Slave) 0 = Frame Sync pulse output (Master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	 1 = Frame Sync pulse/Slave select is active-high 0 = Frame Sync pulse/Slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 1 = SPIx Slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode) 0 = Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCKx) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved 110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)000 = Generates a Frame Sync pulse on each serial word

Note 1: AUDEN can only be written when the SPIEN bit = 0.

- **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- **3**: URDTEN is only valid when IGNTUR = 1.
- **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 19-13: PMRDIN: PARALLEL MASTER PORT READ INPUT DATA REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RDATAI	N<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RDATA	IN<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits⁽²⁾

- **Note 1:** This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN1 register (Register 19-7) is used for reads instead of PMRDIN.
 - **2:** Only used when MODE16 = 1.

26.1 Current Bias Generator Control Registers

REGISTER 26-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
ON	—	—	_	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	_		110EN3	110EN2	110EN1	110EN0	
bit 7		·				·	bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	ON: Current	Bias Module En	able bit					
	1 = Module is	s enabled						
	0 = Module is	s disabled						
bit 14-4	Unimplemer	ited: Read as 'd)'					
bit 3	I10EN3: 10 µA Enable for Output 3 bit							
	1 = 10 μA output is enabled							
	•	tput is disabled						
bit 2	•	A Enable for O	utput 2 bit					
		tput is enabled						
	-	tput is disabled	1. 1.4.1.1					
bit 1	I10EN1: 10 μA Enable for Output 1 bit 1 = 10 μA output is enabled							
		tput is enabled tput is disabled						
bit 0	-	A Enable for O	utput 0 hit					
	ποείνο. 10 μ		uipui o bil					
	1 = 10 0	tput is enabled						

REGISTER 28-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT<7:0>			
bit 7				bit 0			
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	id as '0'		
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared x = Bit is unl		x = Bit is unk	nown

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 28-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<23:16>			
bit 7						bit (
Legend:							
R = Readable bit		W = Writable b	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unk	nown

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
61	MOV	MOV	f,Wn	Move f to Wn	1 1	None	
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
6	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

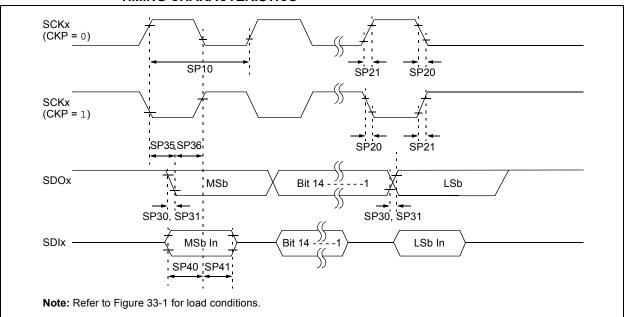
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

TABLE 33-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	_	-	15	MHz	Using PPS pins	
			_	—	40	MHz	SPIx dedicated pins	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time	_	_		ns	See Parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time	_	_		ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36	TdoV2scH,	SDOx Data Output Setup to	30	_		ns	Using PPS pins	
	TdoV2scL	First SCKx Edge	20	_		ns	SPIx dedicated pins	
SP40	TdiV2scH,		30	_		ns	Using PPS pins	
Tdi∨	TdiV2scL		10	_		ns	SPIx dedicated pins	
SP41	TscH2diL,	Hold Time of SDIx Data Input	30	_	_	ns	Using PPS pins	
	TscL2diL	to SCKx Edge	15	_	_	ns	SPIx dedicated pins	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

dsPIC33CK256MP508 FAMILY

Peripheral Trigger Generator (PTG) Peripheral Trigger Generator. See PTG.	. 457
Pin and ANSELx Availability	. 116
Pinout I/O Descriptions (table)	
PMP	
Control Registers	402
Power-Saving Features	
Clock Frequency and Switching	
Resources	
Program Address Space	
Memory Map for dsPIC33CK128MP50X/20X	
Devices	40
Memory Map for dsPIC33CK256MP50X/20X	
Devices	40
Memory Map for dsPIC33CK32MP50X/20X	
Devices	41
Memory Map for dsPIC33CK64MP50X/20X	
Devices	41
Memory Map for dsPIC33CKXXXMP50X/20X	
Devices	39
Program Memory	
Address Space	39
Construction	
Data Access from Program Memory Using	
Table Instructions	75
Table Read High Instructions (TBLRDH)	
Table Read Low Instructions (TBLRDL)	
Interfacing with Data Memory Spaces	
Organization	
Reset Vector	
Programmer's Model	31
Register Descriptions	
PTG	
Command Options	469
Control Registers	
Features	
Input Descriptions	
Output Descriptions	
Step Command Format/Description	

Q OFI

QEI	
Control and Status Registers	
Truth Table	
Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources Register Maps	16
Configuration	
Interrupt Enable	
Interrupt Flag	102
Interrupt Priority	
PMD	
PORTA	
PORTB	
PORTC	
PORTD	
PORTE	
PPS Input Control	
PPS Output Control	177

Registers	
ACLKCON1 (Auxiliary Clock Control) 196	5
ADCMPxCON (ADC Digital Comparator x	
Control)	5
ADCMPxENH (ADC Digital Comparator x	
Channel Enable High)	
	,
ADCMPxENL (ADC Digital Comparator x	
Channel Enable Low) 316	
ADCON1H (ADC Control 1 High) 295	
ADCON1L (ADC Control 1 Low) 294	
ADCON2H (ADC Control 2 High) 297	
ADCON2L (ADC Control 2 Low) 296	5
ADCON3H (ADC Control 3 High) 299	
ADCON3L (ADC Control 3 Low)	
ADCON4H (ADC Control 4 High) 301	
ADCON4L (ADC Control 4 Low)	
ADCON5H (ADC Control 5 High)	
ADCON5L (ADC Control 5 Low)	
ADCORExH (Dedicated ADC Core x	_
Control High) 305	j
ADCORExL (Dedicated ADC Core x	
Control Low) 304	-
ADEIEH (ADC Early Interrupt Enable High)	,
ADEIEL (ADC Early Interrupt Enable Low)	,
ADEISTATH (ADC Early Interrupt Status High) 308	
ADEISTATL (ADC Early Interrupt Status Low)	
ADFLxCON (ADC Digital Filter x Control)	,
ADIEH (ADC Interrupt Enable High)	
ADIEL (ADC Interrupt Enable Low)	
ADLVLTRGH (ADC Level-Sensitive Trigger	
Control High) 306	j
ADLVLTRGL (ADC Level-Sensitive Trigger	
Control Low) 306	;
ADMOD0H (ADC Input Mode Control 0 High) 309	,
ADMOD0L (ADC Input Mode Control 0 Low)	
ADMOD1H (ADC Input Mode Control 1 High)	
ADMOD1L (ADC Input Mode Control 1 Low)	
ADSTATH (ADC Data Ready Status High)	
ADSTATL (ADC Data Ready Status Low)	
ADTRIGNL/ADTRIGNH (ADC Channel Trigger n(x)	•
Selection Low/High)	
AMPCON1H (Op Amp Control High) 483	
AMPCON1L (Op Amp Control Low) 482	
ANSELx (Analog Select for PORTx) 118	
APLLDIV1 (APLL Output Divider) 198	5
APLLFBD1 (APLL Feedback Divider) 197	,
BIASCON (Current Bias Generator Control)	5
C1BDIAGOH (CAN Bus Diagnostics 0 High)	
C1BDIAG0L (CAN Bus Diagnostics 0 Low) 249	
C1BDIAG1H (CAN Bus Diagnostics 1 High)	
C1BDIAG1L (CAN Bus Diagnostics 1 Low)	
C1CONH (CAN Control High)	
C1CONL (CAN Control Low)	
C1DBTCFGH (CAN Data Bit Time	
Configuration High) 219)
C1DBTCFGL (CAN Data Bit Time	
Configuration Low) 219)
C1FIFOBAH (CAN Message Memory Base	
Address High)	5
C1FIFOBAL (CAN Message Memory Base	
Address Low)	3
C1FIFOCONHx (CAN FIFO Control x High)	
C1FIFOCONLx (CAN FIFO Control x Low)	