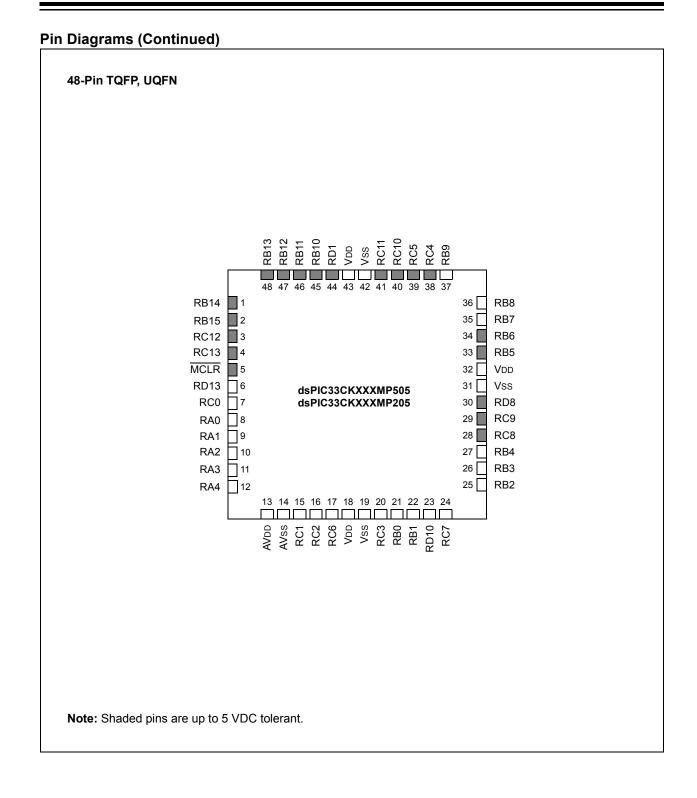


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp506-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT	I/O DE	ESCRIP	TIONS	
Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	I	ST	Yes	UART2 Clear-to-Send
U2RTS	0		Yes	UART2 Request-to-Send
U2RX	I	ST	Yes	UART2 receive
U2TX	0		Yes	UART2 transmit
U2DSR	I.	ST	Yes	UART2 Data-Set-Ready
U2DTR	0		Yes	UART2 Data-Terminal-Ready
U3CTS	1	ST	Yes	UART3 Clear-to-Send
U3RTS	Ó	_	Yes	UART3 Request-to-Send
U3RX	I	ST	Yes	UART3 receive
U3TX	Ö	_	Yes	UART3 transmit
U3DSR	Ĭ	ST	Yes	UART3 Data-Set-Ready
U3DTR	Ó	_	Yes	UART3 Data-Terminal-Ready
SCK1	1/0	ST	Yes	Synchronous serial clock input/output for SPI1
SDI1	1/0	ST	Yes	SPI1 data in
SD01	0		Yes	SPI1 data out
SS1	1/0	ST		SPI1 slave synchronization or frame pulse I/O
SCK2	1/0	ST	Yes ⁽³⁾	
SDI2		ST		SPI2 data in
		51		SPI2 data out
SDO2	0		Yes ⁽³⁾	
SS2	I/O	ST		SPI2 slave synchronization or frame pulse I/O
SCK3	I/O	ST	Yes	Synchronous serial clock input/output for SPI3
SDI3	I	ST	Yes	SPI3 data in
SDO3	0		Yes	SPI3 data out
SS3	I/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2
SCL3	I/O	ST	No	Synchronous serial clock input/output for I2C3
SDA3	I/O	ST	No	Synchronous serial data input/output for I2C3
ASCL3	I/O	ST	No	Alternate synchronous serial clock input/output for I2C3
ASDA3	I/O	ST	No	Alternate synchronous serial data input/output for I2C3
QEIA1-QEIA2	1	ST	Yes	QEI Inputs A1 and A2
QEIB1-QEIB2	İ	ST	Yes	QEI Inputs B1 and B2
QEINDX1-QEINDX2	İ	ST	Yes	QEI Index Inputs 1 and 2
QEIHOM1-QEIHOM2	i	ST	Yes	QEI Home Inputs 1 and 2
QEICMP1-QEICMP2	Ó	_	Yes	QEI Comparator Outputs 1 and 2
SENT1-SENT2	-	ST	Yes	SENT1 and SENT2 inputs
SENT1-SENT2 SENT1OUT-SENT2OUT	0		Yes	SENT1 and SENT2 inputs
		tible inc	1	
Legend: CMOS = CMOS ST = Schmitt Tri				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

O = Output TTL = TTL input buffer I = Input DIG = Digital

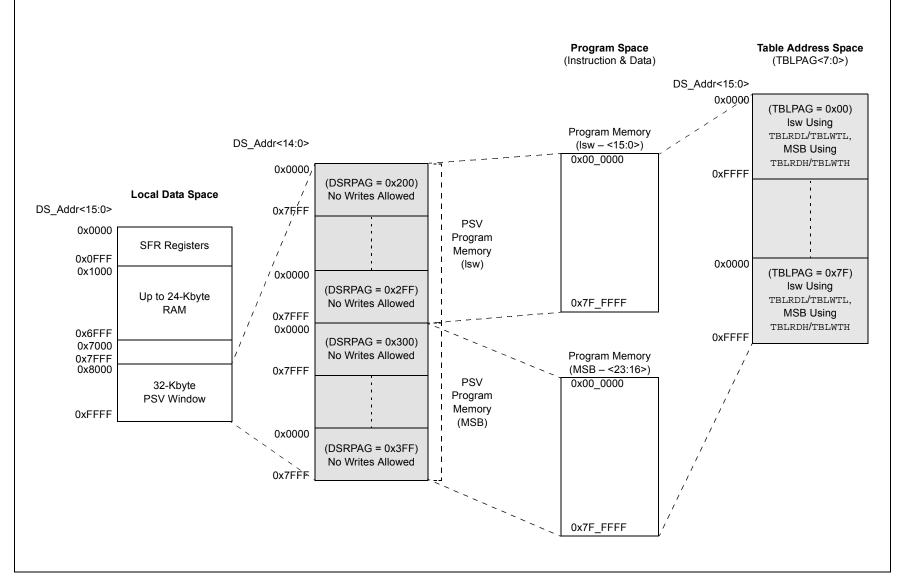
Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS as well as dedicated.

3: SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
PGD1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1
PGC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1
PGD2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2
PGC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2
PGD3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3
PGC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins
Vss	Р	_	No	Ground reference for logic and I/O pins

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)


Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input DIG = Digital

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS as well as dedicated.

3: SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

dsPIC33CK256MP508 FAMILY

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	Y<7:0>			
bit 7							bit 0
l egend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	ADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-0 **NVMSRCADR<15:0>:** NVM Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

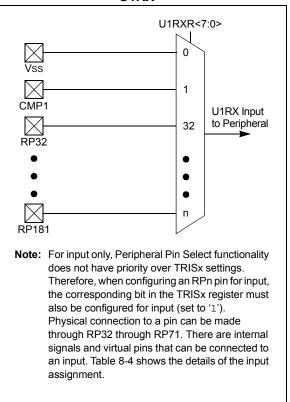
dsPIC33CK256MP508 FAMILY

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

8.5.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.


8.5.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping. Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 8-4 for a list of available inputs.

For example, Figure 8-2 illustrates remappable pin selection for the U1RX input.

FIGURE 8-2:

REMAPPABLE INPUT FOR U1RX

8.5.8 I/O HELPFUL TIPS

- In some cases, certain pins, as defined in Table 33-15 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 33.0 "Electrical Characteristics" of this data sheet. For example:

Vон = 2.4v @ Iон = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 34.0 "DC and AC Device Characteristics Graphs"** for additional information. Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 8-7 for peripheral function numbers)

(see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15		-					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

REGISTER 8-66: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

REGISTER 8-67:	RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

					•••••••		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0
bit 15		·					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8		: Peripheral Ou 7 for peripheral	•	•	RP59 Output F	Pin bits	
bit 7-6	Unimplemen	ted: Read as '	0'				

bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

REGISTER 12-2: FSCL: FREQUENCY SCALE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSCI	_<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSC	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **FSCL<15:0>:** Frequency Scale Register bits The value in this register is added to the frequency scaling accumulator at each pwm_master_clk. When the accumulated value exceeds the value of FSMINPER, a clock pulse is produced.

REGISTER 12-3: FSMINPER: FREQUENCY SCALING MINIMUM PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINP	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINF	PER<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read	l as '0'	
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own

bit 15-0 **FSMINPER<15:0>:** Frequency Scaling Minimum Period Register bits This register holds the minimum clock period (maximum clock frequency) that can be produced by the frequency scaling circuit.

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
REFCIE	REFERCIE	_	EIEN	—	SHREISEL2(1)	SHREISEL1(1)	SHREISEL0(1)			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0			
bit 7							bit C			
Legend:										
R = Reada		W = Writable		-	nented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15		-	-	•	mon Interrupt E					
		interrupt will b	0		gap will become v event	e ready				
bit 14				• •		nable bit				
		REFERCIE: Band Gap or Reference Voltage Error Common Interrupt Enable bit 1 = Common interrupt will be generated when a band gap or reference voltage error is detected								
					eference voltag					
bit 13	Unimplemer	ted: Read as	0'							
bit 12	EIEN: Early I	nterrupts Enab	le bit							
						s (when the EIS				
				d when conver	sion is done (w	hen the ANxRD	Y flag is set)			
bit 11	-	ted: Read as								
bit 10-8		2:0>: Shared C	•	•						
						prior to when the prior to whe				
						prior to when th				
	100 = Early i	nterrupt is set a	and interrupt is	s generated 5	TADCORE clocks	prior to when th	ne data is ready			
						prior to when the				
						prior to when the prior to whe				
						prior to when the				
bit 7	Unimplemer	ted: Read as	0'							
bit 6-0	SHRADCS<	6:0>: Shared A	DC Core Inpu	t Clock Divide	bits					
			umber of TCOR	RESRC (Source	Clock Periods)	for one shared	TADCORE (Core			
	Clock Period		ok Doriodo							
). 54 Source Clo	ck Periods							
	1111111 = 2									
	1111111 = 2 0000011 = 6 0000010 = 4	54 Source Clo Source Clock Source Clock	Periods Periods							
	1111111 = 2 0000011 = 6 0000010 = 4 0000001 = 2	54 Source Clock Source Clock Source Clock Source Clock	Periods Periods Periods							
	1111111 = 2 0000011 = 6 0000010 = 4 0000001 = 2 0000000 = 2	54 Source Clock Source Clock Source Clock Source Clock Source Clock	Periods Periods Periods Periods							
Note 1:	1111111 = 2 0000011 = 6 0000010 = 4 0000001 = 2	54 Source Clock Source Clock Source Clock Source Clock Source Clock Source Clock red ADC core r	Periods Periods Periods Periods esolution (SHF							

REGISTER 13-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

REGISTER 13-31: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER (x = 0, 1, 2, 3) (CONTINUED)

bit 4-0 FLCHSEL<4:0>: Oversampling Filter Input Channel Selection bits

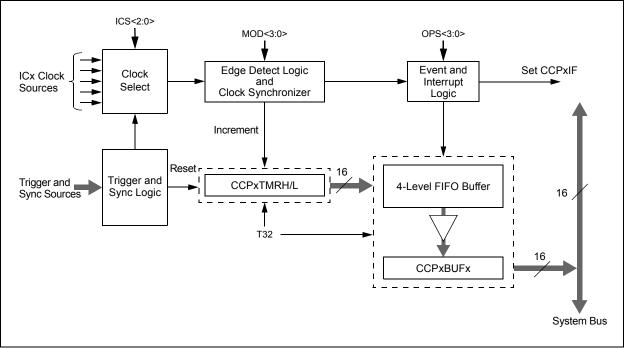
11111 = Reserved ... 11010 = Reserved 11001 = Band gap, 1.2V (AN25) 11000 = Temperature sensor (AN24) 10111 = AN23 ... 00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0

REGISTER 16-14: UxRXCHK: UARTx RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—		—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RXCH	K<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, rea		ıd as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	Unimplemen	ted: Read as '0	,					
bit 7-0	RXCHK<7:0>	Receive Chec	ksum bits (cal	culated from RX	X words)			
	LIN Modes:							
		um of all receive						
	C0EN = 0: Si	um of all receive	d data + additi	ion carries, excl	luding PID.			
	LIN Slave:							
	Cleared when Break is detected.							
	LIN Master/Slave:							
		n Break is detec	ted.					
	Other Modes							
		um of every byte		dition carries.				

C0EN = 0: Value remains unchanged.

22.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base, upon an event, on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 22-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 22-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0000	0	Edge Detect (16-bit capture)			
0000	1	Edge Detect (32-bit capture)			
0001	0	Every Rising (16-bit capture)			
0001	1	Every Rising (32-bit capture)			
0010	0	Every Falling (16-bit capture)			
0010	1	Every Falling (32-bit capture)			
0011	0	Every Rising/Falling (16-bit capture)			
0011	1	Every Rising/Falling (32-bit capture)			
0100	0	Every 4th Rising (16-bit capture)			
0100	1	Every 4th Rising (32-bit capture)			
0101	0	Every 16th Rising (16-bit capture)			
0101	1	Every 16th Rising (32-bit capture)			

TABLE 22-3: INPUT CAPTURE x MODES

REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	1 = Data Source 2 signal is enabled for Gate 1
	0 = Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 10 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	1 = Data Source 1 signal is enabled for Gate 10 = Data Source 1 signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 10 = Data Source 1 inverted signal is disabled for Gate 1

REGISTER 28-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 28-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<23:16>			
bit 7							bit C
Legend:							
R = Readable bit W = Writab		W = Writable t	bit	U = Unimplemented bit, read as '0'		id as '0'	
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 30-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware
	0 = WDT controller via the ON bit (WDTCONL<15>)
bit 14-10	SWDTPS<4:0>: Sleep Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
bit 7	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL<1:0>: Watchdog Timer Clock Select bits
	11 = LPRC clock
	10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC
	00 = Reserved
bit 4-0	RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2

REGISTER 30-17: FBOOT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
_	_	—	—	—	—	BTMODE<1:0>	
bit 7							bit 0
Legend:		PO = Program Once bit					
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	as '1'		

R = Readable bit	vv = vvntable bit	0 = 0 nimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '1'

bit 1-0 BTMODE<1:0>: Device Partition Mode Configuration Status bits

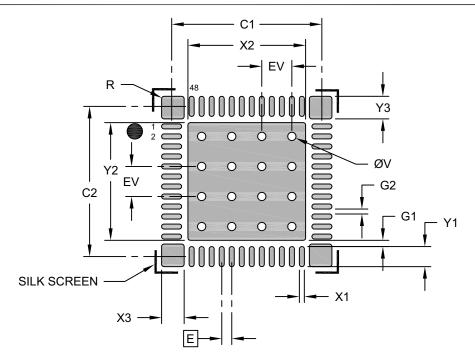
11 = Single Partition mode

10 = Dual Partition mode

01 = Protected Dual Partition mode (Partition 1 is write-protected when inactive)

00 = Reserved; do not use

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
89	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
91	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
92	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
93	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
94	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
95	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
96	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
97	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
98	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
99	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
101	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
104	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
105	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N


TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	/ILLIMETER	S
Dimension	I Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

dsPIC33CK256MP508 FAMILY

G

Getting Started Guidelines	23
Connection Requirements	
Decoupling Capacitors	23
External Oscillator Pins	25
ICSP Pins	25
Master Clear (MCLR) Pin	24
Oscillator Value Conditions on Start-up	
Targeted Applications	
Unused I/Os	

Н

High-Resolution PWM (HSPWM) with	
Fine Edge Placement	
High-Speed Analog Comparator with	
Slope Compensation DAC	
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	
Control Registers	
Features Overview	
Resources	
HSPWM	
Architecture	
Control Registers	

I

I/O Ports	
Configuring Analog/Digital Port Pins	118
Control Registers	118
Helpful Tips	
Parallel I/O (PIO)	115
Resources	137
Write/Read Timing	118
l ² C	
Clock Rates	393
Communicating as Master in Single	
Master Environment	
Control Registers	
Reserved Addresses	
Setting Baud Rate as Bus Master	
Slave Address Masking	
ICSP Write Inhibit	
Activation	
In-Circuit Debugger	
MPLAB ICD 3	
PICkit 3 Programmer	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	
Input Change Notification (ICN)	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set Summary	
Overview	
Symbols Used in Opcode Descriptions	
Instruction-Based Power-Saving Modes	
Idle	
Sleep Inter-Integrated Circuit. See I ² C.	
	615
Internet Address	

Interrupt Controller
Alternate Interrupt Vector Table (AIVT)
Control and Status Registers 105
INTCON1 105
INTCON2 105
INTCON3 105
INTCON4 105
INTTREG 105
Interrupt Vector Details
Interrupt Vector Table (IVT)
Reset Sequence
Resources 105
Interrupt Vector Table
Interrupts Coincident with Power Save Instructions 494
J
JTAG Boundary Scan Interface 505
JTAG Interface
L
Low-Power Sleep Modes (table) 494
М
Memory Organization
Resources
Microchip Internet Web Site
Modulo Addressing
Applicability
Operation Example
Start and End Address
W Address Register Selection
MPLAB REAL ICE In-Circuit Emulator System
MPLAB X Integrated Development
Environment Software
MPLINK Object Linker/MPLIB Object Librarian 542
0
Operational Amplifier
Control Registers
Oscillator
Configuration
Control Registers
CPU Clocking
Internal Fast RC (FRC)
Low-Power RC (LPRC)
Primary (POSC)
Oscillator with High-Frequency PLL
P
r

Packaging	581
Details	583
Marking	581
Parallel Master Port (PMP)	401
Peripheral Module Disable (PMD)	495
Peripheral Pin Select (PPS)	125
Available Peripherals	125
Available Pins	125
Control	126
Control Registers	141
Input Mapping	126
Output Mapping	131
Output Selection for Remappable Pins	134
Remappable Output Pin Registers	132
Remappable Pin Inputs	127
Selectable Input Sources	