

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp506-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CK256MP508 FAMILY

Product Pins	Pins	Flash	Data RAM	ADC Module	ADC Channels	Timers	MCCP/SCCP	CAN FD	DMA Channels	SENT	UART	IdS	I ² C	QEI	CLC	PTG	CRC	PWM (High Speed)	Analog Comparators	12-Bit DAC	Op Amp	PMP	REFO Clock
dsPIC33CK256MP208	80	256K	24K	3	24	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK256MP206	64	256K	24K	3	20	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK256MP205	48	256K	24K	3	19	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK256MP203	36	256K	24K	3	16	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK256MP202	28	256K	24K	3	12	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK128MP208	80	128K	16K	3	24	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK128MP206	64	128K	16K	3	20	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK128MP205	48	128K	16K	3	19	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK128MP203	36	128K	16K	3	16	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK128MP202	28	128K	16K	3	12	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK64MP208	80	64k	8k	3	24	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK64MP206	64	64k	8k	3	20	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK64MP205	48	64k	8k	3	19	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK64MP203	36	64k	8k	3	16	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK64MP202	28	64k	8k	3	12	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK32MP206	64	32k	8k	3	20	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK32MP205	48	32k	8k	3	19	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK32MP203	36	32k	8k	3	16	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK32MP202	28	32k	8k	3	12	1	1/8	0	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1

TABLE 2: dsPIC33CK256MP508 FAMILY WITHOUT CAN FD

DS70005349B-page 4

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	_	_	_	_	PWMPCI2 ⁽¹⁾	PWMPCI1 ⁽¹⁾	PWMPCI0 ⁽¹⁾					
bit 15					·	·	bit 8					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
		_		PHR	PHF	PLR	PLF					
bit 7							bit (
Legend:												
R = Reada	able bit	W = Writable	e bit	U = Unimple	emented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is c	leared	x = Bit is unknow	wn					
bit 15-11	Unimplem	ented: Read a	s '0'									
bit 10-8	PWMPCI<2:0>: PWM Source for PCI Selection bits ⁽¹⁾											
	111 = PWN	/ Generator #	8 output is ma	de available t	o PCI logic							
	110 = PWN	M Generator #	7 output is mad	de available t	o PCI logic							
	101 = PWN	A Generator #	output is mai	de available t	OPCI logic							
	100 = PVV		1 output is mai	de available t de available t	o PCI logic							
	010 = PWN	A Generator #	3 output is mai	de available t	o PCI logic							
	001 = PWN	A Generator #	2 output is ma	de available t	o PCI logic							
	000 = PWN	A Generator #	1 output is mad	de available t	o PCI logic							
bit 7-4	Unimplem	ented: Read a	s '0'									
bit 3	PHR: PWM	IxH Rising Edg	ge Trigger Ena	ble bit								
	1 = Rising	edge of PWM	xH will trigger	the LEB dura	tion counter							
	0 = LEB ig	nores the risin	g edge of PWI	MxH								
bit 2	PHF: PWM	xH Falling Edg	ge Trigger Ena	ble bit								
	1 = Falling	edge of PWM	xH will trigger	the LEB dura	ation counter							
	0 = LEB ig	nores the fallir	ig edge of PW	МхН								
bit 1	PLR: PWM	xL Rising Edg	e Trigger Enat	ole bit								
	1 = Rising	edge of PWM	xL will trigger t	he LEB durat	tion counter							
	0 = LEB ig	nores the risin	g edge of PWI	MxL								
bit 0	PLF: PWM	xL Falling Edg	e Trigger Enal	ble bit								
	1 = Falling	edge of PWM	xL will trigger	the LEB dura	tion counter							
	0 = LEB Ig	nores the fallin	ig edge of PW	MXL								
Note 1:	The selected I	PWM Generat	or source does	s not affect th	e LEB counter. T	his source can be	e optionally					
	upod op o DCI	Linnut DCL au	alifian DCI tarr	minator or DC	l torminator quali	fior (and the deer	printion in					

REGISTER 12-22: PGxLEBH: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER HIGH

used as a PCI input, PCI qualifier, PCI terminator or PCI terminator qualifier (see the description in Register 12-19 and Register 12-20 for more information).

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DIFF23 | SIGN23 | DIFF22 | SIGN22 | DIFF21 | SIGN21 | DIFF20 | SIGN20 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16
bit 7							bit 0

REGISTER 13-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<23:16>: Differential-Mode for Corresponding Analog Inputs bits

0 = Channel is single-ended

bit 14 through **SIGN<23:16>:** Output Data Sign for Corresponding Analog Inputs bits

- bit 0 (even) 1 = Channel output data is signed
 - 0 = Channel output data is unsigned

REGISTER 13-22: ADMOD1H: ADC INPUT MODE CONTROL REGISTER 1 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	DIFF25	SIGN25	DIFF24	SIGN24
bit 7							bit 0

Legend:					
R = Readable bit	bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 3 through DIFF<25:24>: Differential-Mode for Corresponding Analog Inputs bits

bit 1 (odd) 1 = Channel is differential

0 = Channel is single-ended

bit 2 through SIGN<25:24>: Output Data Sign for Corresponding Analog Inputs bits

bit 0 (even) 1 = Channel output data is signed

0 = Channel output data is unsigned

dsPIC33CK256MP508 FAMILY

FIGURE 14-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB			
bit 15							bit 8			
P/M/ 0		P///_0	P/M/_0	P_v.	P_v	P_v	P-v			
HOMPOL				HOME		OFB				
bit 7	IBAT OL	QLDI OL	QL/1 OL	HOWE	MDEX		bit 0			
							5100			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15 QCAPEN: QEIx Position Counter Input Capture Enable bit 1 = HOMEx input event (positive edge) triggers a position capture event (HCAPEN must be cleared) 0 = HOMEx input event (positive edge) does not trigger a position capture event bit 14 FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit 1 = Input pin digital filter is enabled 0 = Input pin digital filter is disabled (bypassed)										
bit 13-11	QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits 111 = 1:256 clock divide 110 = 1:64 clock divide 101 = 1:32 clock divide 100 = 1:16 clock divide 011 = 1:8 clock divide 011 = 1:4 clock divide 010 = 1:4 clock divide 001 = 1:2 clock divide 001 = 1:1 clock divide									
bit 10-9	OUTFNC<1:0 11 = The CN ⁻ 10 = The CN ⁻ 01 = The CN ⁻ 00 = Output is	I>: QEIx Modul ICMPx pin goe ICMPx pin goe ICMPx pin goe s disabled	e Output Func s high when P s high when P s high when P	tion Mode Sele OSxCNT ≤ QE OSxCNT ≤ QE OSxCNT ≥ QE	ect bits IxLEC or POS IxLEC IxGEC	⟨CNT <u>></u> QEIxGI	EC			
bit 8	SWPAB: Swa 1 = QEAx and 0 = QEAx and	ap QEAx and Q d QEBx are swa d QEBx are not	EBx Inputs bit apped prior to swapped	Quadrature De	coder logic					
bit 7	HOMPOL: HO 1 = Input is in 0 = Input is no	DMEx Input Pol verted ot inverted	arity Select bit	t						
bit 6	IDXPOL: IND 1 = Input is in 0 = Input is no	Xx Input Polari verted ot inverted	ty Select bit							
bit 5	QEBPOL: QE 1 = Input is in 0 = Input is no	EBx Input Polar verted ot inverted	ity Select bit							
bit 4	QEAPOL: QE 1 = Input is in 0 = Input is no	EAx Input Polar verted ot inverted	ity Select bit							
bit 3	HOME: Status 1 = Pin is at I 0 = Pin is at I	s of HOMEx Inp ogic '1' if the H ogic '0' if the H	out Pin After P OMPOL bit is OMPOL bit is	olarity Control I set to '0'; pin is set to '0'; pin is	oit (read-only) at logic '0' if th at logic '1' if th	e HOMPOL bit e HOMPOL bit	is set to '1' is set to '1'			

REGISTER 15-2: QEIXIOC: QEIX I/O CONTROL REGISTER

U-0	U-0	R/C-0, HS	R/W-0	R/C-0, HS	R/W-0	R/C-0, HS	R/W-0			
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN			
bit 15		•					bit 8			
R/C-0, HS	R/W-0	R/C-0, HS	R/W-0	R/C-0, HS	R/W-0	R/C-0, HS	R/W-0			
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN			
bit 7							bit 0			
r										
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimplemen	ted: Read as ')'							
bit 13	PCHEQIRQ:	Position Count	er Greater Tha	n Compare Sta	tus bit					
	1 = POSxCN	$T \ge QEIXGEC$								
hit 12		Position Count	er Greater Tha	n Compare Inte	rrunt Enable b	it				
511 12	1 = Interrupt is enabled									
	0 = Interrupt i	is disabled								
bit 11	PCLEQIRQ: Position Counter Less Than Compare Status bit									
	1 = POSxCN	$T \leq QEIxLEC$								
	0 = POSxCNT > QEIxLEC									
bit 10	PCLEQIEN:	Position Counte	er Less Than C	ompare Interru	pt Enable bit					
	1 = Interrupt i	is enabled								
bit 9	POSOVIRQ:	Position Count	er Overflow Sta	atus bit						
	1 = Overflow	has occurred								
	0 = No overfle	ow has occurre	d							
bit 8	POSOVIEN:	Position Counter	er Overflow Inte	errupt Enable b	it					
	1 = Interrupt i	is enabled								
hit 7		is disabled	lomina) Initiali-	ration Dragona	Complete Stati	un hit(1)				
DIL 7		T was reinitializ	oming) milializ od	alion Process	Complete Statt					
	0 = POSxCN	T was not reinit	ialized							
bit 6	PCIIEN: Posi	tion Counter (H	oming) Initializ	ation Process (Complete Inter	rupt Enable bit				
	1 = Interrupt i	is enabled			-	-				
	0 = Interrupt i	is disabled								
bit 5	VELOVIRQ:	Velocity Counte	r Overflow Sta	tus bit						
	1 = Overflow	has occurred	4							
hit 4		ow has occurre	u r Ovorflow Into	rrupt Epoblo bi	+					
DIL 4	1 = Interrunt i	is enabled		inupi Enable bi	L					
	0 = Interrupt i	is disabled								
bit 3	HOMIRQ: Sta	atus Flag for Ho	me Event Stat	us bit						
	1 = Home eve	ent has occurre	d							
	0 = No Home	e event has occi	urred							

REGISTER 15-4: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

REGISTER 15-5: POSxCNTL: POSITION x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		POSC	NT<15:8>						
						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
POSCNT<7:0>									
						bit 0			
bit	W = Writable bit U = Unimplemented bit, read as '0'								
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown			
	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 bit W = Writable b 'OR '1' = Bit is set	R/W-0 R/W-0 R/W-0 POSC POSC R/W-0 R/W-0 POSC bit W = Writable bit POSC POR<'1' = Bit is set	R/W-0 R/W-0 R/W-0 POSCNT<15:8> R/W-0 R/W-0 POSCNT<7:0>	R/W-0 R/W-0 R/W-0 R/W-0 POSCNT<15:8> R/W-0 R/W-0 R/W-0 R/W-0 POSCNT<7:0> bit W = Writable bit U = Unimplemented bit, read POR<'1' = Bit is set	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POSCNT<15:8> R/W-0 R/W-0			

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 15-6: POSxCNTH: POSITION x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			POSC	NT<31:24>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	POSCNT<23:16>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			nown			

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 16-13: UxTXCHK: UARTx TRANSMIT CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	_	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TXCH	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '0	3				
bit 7-0	TXCHK<7:0>	: Transmit Cheo	ksum bits (cal	culated from T>	(words)		
	<u>LIN Modes:</u> C0EN = 1: Su C0EN = 0: Su	ım of all transmi ım of all transmi	tted data + ado tted data + ado	dition carries, in dition carries, e	cluding PID. xcluding PID.		

LIN Slave:

Cleared when Break is detected.

LIN Master/Slave:

Cleared when Break is detected.

Other Modes:

C0EN = 1: Sum of every byte transmitted + addition carries.

C0EN = 0: Value remains unchanged.

dsPIC33CK256MP508 FAMILY

FIGURE 17-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 17-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$

Where:

FPB is the Peripheral Bus Clock Frequency.

REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 4 PS: SENTx Module Clock Prescaler (divider) bits 1 = Divide-by-4 0 = Divide-by-1 bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives 6 data nibbles in a SENT data pocket
 - 101 = Module transmits/receives 5 data nibbles in a SENT data pocket
 - 100 = Module transmits/receives 4 data nibbles in a SENT data pocket
 - 011 = Module transmits/receives 3 data nibbles in a SENT data pocket
 - 010 = Module transmits/receives 2 data nibbles in a SENT data pocket
 - $\tt 001$ = Module transmits/receives 1 data nibble in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

REGISTER 22-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—		—	—
bit 15							bit 8
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readab	le bit	W1 = Write '1'	Only bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimpleme	nted: Read as '0)'				
bit 7	CCPTRIG: C	CPx Trigger Sta	itus bit				
	1 = Timer ha	as been triggered	d and is runnir	ng			
	0 = Timer ha	as not been trigg	ered and is he	eld in Reset			
bit 6	TRSET: CCF	Px Trigger Set Re	equest bit				<i>.</i>
	Writes '1' to	this location to tr	igger the time	r when TRIGEN	I = 1 (location	always reads a	is ' 0') .
bit 5	TRCLR: CCI	Px Trigger Clear	Request bit				
L 11 A		this location to c	ancel the time	r trigger when I	RIGEN = 1 (IC	cation always	reads as ^r 0 ^r).
DIT 4		-X Auto-Shutdow	In Event Statu			atata	
	1 = A shutad0 = CCPx of	utputs operate n	orogress; CCP ormallv	x outputs are in	the shutdown	state	
bit 3	SCEVT: Sind	le Edge Compa	re Event Statu	ıs bit			
	1 = A single	edge compare e	event has occu	urred			
	0 = A single	edge compare e	event has not	occurred			
bit 2	ICDIS: Input	Capture x Disat	ole bit				
	1 = Event or	n Input Capture :	k pin (ICx) doe	es not generate	a capture ever	nt	
	0 = Event or	n Input Capture :	x pin will gene	rate a capture e	event		
bit 1	ICOV: Input	Capture x Buffer	Overflow Stat	tus bit			
	1 = The Inpu	ut Capture x FIF	O buffer has o	verflowed			
bit Ω		it Capture x Ruff	o buildi lida li ar Status hit				
		anture x buffer h	as data availal	ole			
	0 = Input Ca	apture x buffer is	empty				

23.0 CONFIGURABLE LOGIC CELL (CLC)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (DS70005298) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 23-1 shows an overview of the module.

Figure 23-3 shows the details of the data source multiplexers and Figure 23-2 shows the logic input gate connections.

FIGURE 23-1: CLCx MODULE

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_		DS4<2:0>		—		DS3<2:0>	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		DS2<2:0>				DS1<2:0>	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as '0	,				
bit 14-12	DS4<2:0>: [Data Selection M	UX 4 Signal 8	Selection bits			
	111 = SCCP	3 auxiliary out					
	101 = CLCIN	ID pin					
	100 = Reser	ved					
	011 = SPI1 I	nput (SDIx) ⁽¹⁾					
	010 = Comp	arator 3 output					
	001 = CLC2 000 = PWM	Event A					
bit 11	Unimplemer	nted: Read as '0	,				
bit 10-8	DS3<2:0>: [ata Selection M	UX 3 Signal S	Selection bits			
	111 = SCCP	4 Compare Ever	nt Flag (CCP4	4IF)			
	110 = SCCP	3 Compare Eve	nt Flag (CCP:	3IF)			
	101 = CLC4	out					
	100 = UARI 011 = SPI1 (1 RX output corr	esponding to	CLCx module	_o (1)		
	010 = Comp	arator 2 output	onesponding				
	001 = CLC1	output					
	000 = CLCIN	IC I/O pin					
bit 7	Unimplemer	nted: Read as '0	,				
bit 6-4	DS2<2:0>: [ata Selection M	UX 2 Signal S	Selection bits			
	111 = SCCP	2 OC (CCP2IF)	out				
	110 = SCCP	1 OC (CCP1IF)	out				
	101 = Reser	ved					
	011 = UART	1 TX input corre	sponding to C	CLCx module			
	010 = Comp	arator 1 output					
	001 = Reser	ved					
hit 3		NB I/O pin	,				
DILO	uninpiemer	neu: Read as 10					
Note 1:	Valid only when	SPI is used on P	PS.				

REGISTER 23-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
. .							
Legend:							
R = Readabl	e bit	W = Writable	bit		nented bit, read		
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkr	nown
hit 15		1 Data Sauraa	4 True Enchle	hit			
DIL 15	1 = Data Sou	4 Data Source	enabled for Gat	ι Dil tο Δ			
	0 = Data Sou	rce 4 signal is o	disabled for Ga	te 4			
bit 14	G4D4N: Gate	e 4 Data Source	e 4 Negated En	able bit			
	1 = Data Sou	rce 4 inverted	signal is enable	d for Gate 4			
	0 = Data Sou	rce 4 inverted s	signal is disable	ed for Gate 4			
bit 13	G4D3T: Gate	4 Data Source	3 True Enable	bit			
	1 = Data Sou 0 = Data Sou	rce 3 signal is (rce 3 signal is (enabled for Gat	te 4 te 4			
bit 12	G4D3N: Gate	e 4 Data Source	e 3 Negated En	able bit			
	1 = Data Sou	rce 3 inverted s	signal is enable	d for Gate 4			
	0 = Data Sou	rce 3 inverted s	signal is disable	ed for Gate 4			
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	bit			
	1 = Data Sou	rce 2 signal is e	enabled for Gat	te 4			
bit 10	G4D2N: Gate	4 Data Source	e 2 Negated En	able bit			
	1 = Data Sou	rce 2 inverted	signal is enable	d for Gate 4			
	0 = Data Sou	rce 2 inverted s	signal is disable	ed for Gate 4			
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	bit			
	1 = Data Sou	rce 1 signal is e	enabled for Gat	te 4			
h :+ 0	0 = Data Sou	rce 1 signal is (disabled for Ga	te 4			
DIT 8	1 - Data Sou	e 4 Data Source	e i negated En signal is enable	able bit			
	0 = Data Sou	rce 1 inverted s	signal is disable	ed for Gate 4			
bit 7	G3D4T: Gate	3 Data Source	4 True Enable	bit			
	1 = Data Sou	rce 4 signal is e	enabled for Gat	te 3			
	0 = Data Sou	rce 4 signal is o	disabled for Ga	te 3			
bit 6	G3D4N: Gate	e 3 Data Source	e 4 Negated En	able bit			
	1 = Data Sou	rce 4 inverted s	signal is enable signal is disable	ed for Gate 3			
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	bit			
	1 = Data Sou	rce 3 signal is e	enabled for Gat	te 3			
	0 = Data Sou	rce 3 signal is o	disabled for Ga	te 3			
bit 4	G3D3N: Gate	e 3 Data Source	e 3 Negated En	able bit			
	1 = Data Sou	rce 3 inverted s	signal is enable	d for Gate 3			
	0 = Data Sou	rce 3 inverted s	signal is disable	ed for Gate 3			

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

REGISTER 24-7: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1I	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	nented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit i			x = Bit is unk	nown			

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 24-8: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	PTGSDLIM<15:8>							
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGSE)LIM<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented				nented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl			x = Bit is unkr	nown				

bit 15-0 PTGSDLIM<15:0>: PTG Step Delay Limit Register bits

This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: These bits are read-only when the module is executing Step commands.

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

32.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 33-15: I/O PIN INPUT SPECIFICATIONS

Operat Operat	$\begin{array}{l} \mbox{Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min. ⁽⁵⁾	Тур. ⁽¹⁾	Max. ⁽⁶⁾	Units	Conditions		
	VIL	Input Low Voltage							
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled		
DI20	VIH	Input High Voltage							
		I/O Pins Not 5V Tolerant ⁽³⁾	0.8 VDD	—	Vdd	V			
		5V Tolerant I/O Pins and MCLR ⁽³⁾	0.8 VDD	—	5.5	V			
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	0.8 VDD	—	5.5	V	SMBus disabled		
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	2.1	—	5.5	V	SMBus enabled		
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	0.8 Vdd	_	Vdd	V	SMBus disabled		
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	2.1	_	Vdd	V	SMBus enabled		
DI30	ICNPU	Input Change Notification Pull-up Current ^(2,4)	175	360	545	μA	VDD = 3.6V, VPIN = VSS		
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁴⁾	65	215	360	μA	VDD = 3.6V, VPIN = VDD		
DI50	lı∟	Input Leakage Current ⁽²⁾							
		I/O Pins 5V Tolerant ⁽³⁾	-700		700	nA			
		I/O Pins Not 5V Tolerant ⁽³⁾	-700	—	700	nA			
		MCLR	-700	—	700	nA			
		osci	-700	—	700	nA	XT and HS modes		

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: Characterized but not tested.

5: VPIN = VSS.

6: VPIN = VDD.

TABLE 33-28: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Operat Operat	Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP10	FscP	Maximum SCKx Frequency			15	MHz	Using PPS pins			
			—	_	40	MHz	SPIx dedicated pins			
SP20	TscF	SCKx Output Fall Time	_	_		ns	See Parameter DO32			
SP21	TscR	SCKx Output Rise Time	_	_		ns	See Parameter DO31			
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See Parameter DO32			
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns				
SP36	TdiV2scH,	SDOx Data Output Setup to	30	_	_	ns	Using PPS pins			
	TdiV2scL	First SCKx Edge	3	_	_	ns	SPIx dedicated pins			

Note 1: These parameters are characterized but not tested in manufacturing.

Г

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

Resets	91
Brown-out Reset (BOR)	91
Configuration Mismatch Reset (CM)	91
Illegal Condition Reset (IOPUWR)	91
Illegal Opcode	91
Security	91
Uninitialized W Register	91
Master Clear (MCLR) Pin Reset	91
Power-on Reset (POR)	91
RESET Instruction (SWR)	91
Resources	92
Trap Conflict Reset (TRAPR)	91
Watchdog Timer Time-out Reset (WDTO)	91
Revision History	605

S

-	
SENTx Protocol Data Frames	416
Serial Peripheral Interface (SPI)	373
Serial Peripheral Interface. See SPI.	
SFR Blocks	
000h	50
100h	51
200h	52
300h	53
400h	54
500h	55
600h	56
800h	57
900h	58
A00h	59
B00h	60
C00h	61
D00h	62
E00h	63
F00h	64
Single-Edge Nibble Transmission (SENT)	415
Control Registers	419
Receive Mode	418
Configuration	418
Transmit Mode	417
Configuration	417
Single-Edge Nibble Transmission for	
Automotive Applications	415
Single-Edge Nibble Transmission. See SENT.	
Software Simulator	
MPLAB X SIM	543
Special Features of the CPU	505
SPI	
Control Registers	378

Т

Thermal Operating Conditions 54 Thermal Packaging Characteristics 54 Third-Party Development Tools 54 Timer1 42	46 46 44 25
Control Register	26
Timing Diagrams	
BOR and Master Clear Reset Characteristics 56	61
Clock/Instruction Cycle 18	35
External Clock55	58
High-Speed PWMx Fault Characteristics 56	33
High-Speed PWMx Module Characteristics	33
I/O Characteristics	31
I2Cx Bus Data (Master Mode) 57	72
I2Cx Bus Data (Slave Mode) 57	74
I2Cx Bus Start/Stop Bits (Master Mode) 57	72
I2Cx Bus Start/Stop Bits (Slave Mode)57	74
QEI Interface Signals	31
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	37
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	66
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)56	64
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	35
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 0)	38
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0)	70
UARTx I/O Characteristics	76

U

UART	
Architectural Overview	352
Character Frame	353
Control Registers	354
Data Buffers	353
Protocol Extensions	353
Unique Device Identifier (UDID)	43
Unique Device Identifier. See UDID.	
Universal Asynchronous Receiver	
Transmitter (UART)	351
Universal Asynchronous Receiver Transmitter	r. See UART.
User OTP Memory	524
V	

olto

Voltage Regulator (On-Chip)	524
W	
Watchdog Timer (WDT)	505
WWW Address	615

WWW, On-Line Support 15