

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp506t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PTG		CCP1CON3H	95A	00000-00	CCP3PRL	9AC	1111111111111111111	
PTGCST	900	00-00000x00	CCP1STATL	95C	000xx0000	CCP3PRH	9AE	111111111111111111
PTGCON	902	000000000000-000	CCP1STATH	95E	00000	CCP3RAL	9B0	000000000000000000000000000000000000000
PTGBTE	904	*****	CCP1TMRL	960	000000000000000000	CCP3RBL	9B4	000000000000000000000000000000000000000
PTGBTEH	906	000000000000000000000000000000000000000	CCP1TMRH	962	000000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
PTGHOLD	908	000000000000000000000000000000000000000	CCP1PRL	964	111111111111111111	CCP3BUFH	9BA	000000000000000000000000000000000000000
PTGT0LIM	90C	000000000000000000	CCP1PRH	966	111111111111111111	CCP4CON1L	9BC	0000000000000000000000000000000000000
PTGT1LIM	910	000000000000000000000000000000000000000	CCP1RAL	968	000000000000000000	CCP4CON1H	9BE	00000000000000
PTGSDLIM	914	000000000000000000000000000000000000000	CCP1RBL	96C	000000000000000000	CCP4CON2L	9C0	00-000000000
PTGC0LIM	918	000000000000000000000000000000000000000	CCP1BUFL	970	000000000000000000	CCP4CON2H	9C2	100-00000
PTGC1LIM	91C	000000000000000000	CCP1BUFH	972	000000000000000000	CCP4CON3H	9C6	00000-00
PTGADJ	920	000000000000000000	CCP2CON1L	974	000000000000000	CCP4STATL	9C8	000xx0000
PTGL0	924	000000000000000000000000000000000000000	CCP2CON1H	976	00000000000000	CCP4STATH	9CA	00000
PTGQPTR	928	00000	CCP2CON2L	978	00-000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
PTGQUE0	930	****	CCP2CON2H	97A	0100-00000	CCP4TMRH	9CE	000000000000000000000000000000000000000
PTGQUE1	932	*****	CCP2CON3H	97E	00000-00	CCP4PRL	9D0	111111111111111111
PTGQUE2	934	****	CCP2STATL	980	000xx0000	CCP4PRH	9D2	1111111111111111111
PTGQUE3	936	*****	CCP2STATH	982	00000	CCP4RAL	9D4	000000000000000000000000000000000000000
PTGQUE4	938	*****	CCP2TMRL	984	000000000000000000	CCP4RBL	9D8	000000000000000000000000000000000000000
PTGQUE5	93A	*****	CCP2TMRH	986	000000000000000000	CCP4BUFL	9DC	000000000000000000000000000000000000000
PTGQUE6	93C	*****	CCP2PRL	988	111111111111111111	CCP4BUFH	9DE	000000000000000000000000000000000000000
PTGQUE7	93E	*****	CCP2PRH	98A	111111111111111111	CCP5CON1L	9E0	0000000000000000000000000000000000000
PTGQUE8	940	*****	CCP2RAL	98C	000000000000000000	CCP5CON1H	9E2	00000000000000
PTGQUE9	942	*****	CCP2RBL	990	000000000000000000	CCP5CON2L	9E4	00-000000000
PTGQUE10	944	*****	CCP2BUFL	994	000000000000000000	CCP5CON2H	9E6	100-00000
PTGQUE11	946	*****	CCP2BUFH	996	000000000000000000	CCP5CON3H	9EA	00000-00
PTGQUE12	948	*****	CCP3CON1L	998	000000000000000	CCP5STATL	9EC	000xx0000
PTGQUE13	94A	*****	CCP3CON1H	99A	00000000000000	CCP5STATH	9EE	00000
PTGQUE14	94C	*****	CCP3CON2L	99C	00-000000000	CCP5TMRL	9F0	000000000000000000000000000000000000000
PTGQUE15	94E	*****	CCP3CON2H	99E	100-00000	CCP5TMRH	9F2	000000000000000000000000000000000000000
CCP	•		CCP3CON3H	9A2	00000-00	CCP5PRL	9F4	111111111111111111
CCP1CON1L	950	000000000000000	CCP3STATL	9A4	000xx0000	CCP5PRH	9F6	111111111111111111
CCP1CON1H	952	00000000000000	CCP3STATH	9A6	00000	CCP5RAL	9F8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP3TMRL	9A8	000000000000000000	CCP5RBL	9FC	000000000000000000000000000000000000000
CCP1CON2H	956	100-00000	CCP3TMRH	9AA	000000000000000000000000000000000000000		•	

TABLE 4-10: SFR BLOCK 900h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

4.4.5 INTERFACING PROGRAM AND DATA MEMORY SPACES

The dsPIC33CK256MP508 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33CK256MP508 family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-20: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1>				0	
(Code Execution)			0xxx xxxx x	xxx xxx	x xxxx xxx0		
TBLRD/TBLWT	User	TBLPAG<7:0>			Data EA<15:0>		
(Byte/Word Read/Write)		0	xxx xxxx	XXXX XXXX XXXX XXXX			
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
		1	xxx xxxx	xxxx xxxx xxxx xxxx			

FIGURE 4-16: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.
 - **2:** Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

5.4 ICSP™ Write Inhibit

ICSP Write Inhibit is an access restriction feature that, when activated, restricts all of Flash memory. Once activated, ICSP Write Inhibit permanently prevents ICSP Flash programming and erase operations, and cannot be deactivated. This feature is intended to prevent alteration of Flash memory contents, with behavior similar to One-Time-Programmable (OTP) devices.

RTSP, including erase and programming operations, is not restricted when ICSP Write Inhibit is activated; however, code to perform these actions must be programmed into the device before ICSP Write Inhibit is activated. This allows for a bootloader-type application to alter Flash contents with ICSP Write Inhibit activated.

Entry into ICSP and Enhanced ICSP modes is not affected by ICSP Write Inhibit. In these modes, it will continue to be possible to read configuration memory space and any user memory space regions which are not code protected. With ICSP writes inhibited, an attempt to set WR (NVMCON<15>) = 1 will maintain WR = 0, and instead, set WRERR (NVMCON<13>) = 1. All Enhanced ICSP erase and programming commands will have no effect with self-checked programming commands returning a FAIL response opcode (PASS if the destination already exactly matched the requested programming data).

Once ICSP Write Inhibit is activated, it is not possible for a device executing in Debug mode to erase/write Flash, nor can a debug tool switch the device to Production mode. ICSP Write Inhibit should therefore only be activated on devices programmed for production.

The JTAG port, when enabled, can be used to map ICSP signals to JTAG I/O pins. All Flash erase/ programming operations initiated via the JTAG port will therefore also be blocked after activating ICSP Write Inhibit.

5.4.1 ACTIVATING ICSP™ WRITE INHIBIT

Caution: It is not possible to deactivate ICSP Write Inhibit.

ICSP Write Inhibit is activated by executing a pair of NVMCON double-word programming commands to save two 16-bit activation values in the configuration memory space. The target NVM addresses and values required for activation are shown in Table 5-1. Once both addresses contain their activation values, ICSP Write Inhibit will take permanent effect on the next device Reset. Neither address can be reset, erased or otherwise modified, through any means, after being successfully programmed, even if one of the addresses has not been programmed.

Only the lower 16 data bits stored at the activation addresses are evaluated; the upper 8 bits and second 24-bit word written by the double-word programming (NVMOP<3:0>) should be written as '0's. The addresses can be programmed in any order and also during separate ICSP/Enhanced ICSP/RTSP sessions, but any attempt to program an incorrect 16-bit value or use a row programming operation to program the values will be aborted without altering the existing data.

TABLE 5-1:	ICSP™ WRITE INHIBIT
	ACTIVATION ADDRESSES
	AND DATA

	Configuration Memory Address	ICSP Write Inhibit Activation Value		
Write Lock 1	0x801034	0x006D63		
Write Lock 2	0x801038	0x006870		

REGISTER 8-8: CNCONX: CHANGE NOTIFICATION CONTROL FOR PORTX REGISTER

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
ON		—	—	CNSTYLE	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	—	—	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15	ON: Change	Notification (CN	I) Control for	PORTx On bit			
	1 = CN is ena 0 = CN is disa						
bit 14-12		ted: Read as '()'				
bit 11	-	hange Notificat		ection bit			
		•			its are used for a	a Change Notif	ication event)
	0 = Mismatch				CNSTATx<15:0		
bit 10-0	Unimplemen	ted: Read as ')'				

REGISTER 8-9: CNEN0x: INTERRUPT CHANGE NOTIFICATION ENABLE FOR PORTX REGISTER

CNEN0x<7:0> bit 7 bit 0							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			CNEN0	x<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **CNEN0x<15:0>:** Interrupt Change Notification Enable for PORTx bits 1 = Interrupt-on-change (from the last read value) is enabled for PORTx[n] 0 = Interrupt-on-change is disabled for PORTx[n]

Input Name ⁽¹⁾	Function Name	Register	Register Bits
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Input	CAN1RX	RPINR26	CAN1RXR<7:0>
UART3 Receive	U3RX	RPINR27	U3RXR<7:0>
UART3 Data-Set-Ready	U3DSR	RPINR27	U3DSRR<7:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<7:0>
SPI3 Clock Input	SCK3IN	RPINR29	SCK3R<7:0>
SPI3 Slave Select	SS3	RPINR30	SS3R<7:0>
MCCP Timer9	TCKI9	RPINR32	TCKI9R<7:0>
MCCP Capture 9	ICM9	RPINR33	ICM9R<7:0>
xCCP Fault C	OCFC	RPINR37	OCFCR<7:0>
PWM Input 17	PCI17	RPINR37	PCI17R<7:0>
PWM Input 18	PCI18	RPINR38	PCI18R<7:0>
PWM Input 12	PCI12	RPINR42	PCI12R<7:0>
PWM Input 13	PCI13	RPINR42	PCI13R<7:0>
PWM Input 14	PCI14	RPINR43	PCI14R<7:0>
PWM Input 15	PCI15	RPINR43	PCI15R<7:0>
PWM Input 16	PCI16	RPINR44	PCI16R<7:0>
SENT1 Input	SENT1	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2	RPINR45	SENT2R<7:0>
CLC Input A	CLCINA	RPINR45	CLCINAR<7:0>
CLC Input B	CLCINB	RPINR46	CLCINBR<7:0>
CLC Input C	CLCINC	RPINR46	CLCINCR<7:0>
CLC Input D	CLCIND	RPINR47	CLCINDR<7:0>
ADC Trigger Input (ADTRIG31)	ADCTRG	RPINR47	ADCTRGR<7:0>
xCCP Fault D	OCFD	RPINR48	OCFDR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR48	U1CTSR<7:0>
UART2 Clear-to-Send	U2CTS	RPINR49	U2CTSR<7:0>
UART3 Clear-to-Send	U3CTS	RPINR49	U3CTSR<7:0>

TABLE 8-5: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
SDO3	001011	RPn tied to SPI3 Data Output
SCK3	001100	RPn tied to SPI3 Clock Output
SS3	001101	RPn tied to SPI3 Slave Select
REFCLKO	001110	RPn tied to Reference Clock Output
OCM1	001111	RPn tied to SCCP1 Output
OCM2	010000	RPn tied to SCCP2 Output
OCM3	010001	RPn tied to SCCP3 Output
OCM4	010010	RPn tied to SCCP4 Output
OCM5	010011	RPn tied to SCCP5 Output
OCM6	010100	RPn tied to SCCP6 Output
CAN1	010101	RPn tied to CAN1 Output
CMP1	010111	RPn tied to Comparator 1 Output
CMP2	011000	RPn tied to Comparator 2 Output
CMP3	011001	RPn tied to Comparator 3 Output
U3TX	011011	RPn tied to UART3 Transmit
U3RTS	011100	RPn tied to UART3 Request-to-Send
PWM4H	100010	RPn tied to PWM4H Output
PWM4L	100011	RPn tied to PWM4L Output
PWMEA	100100	RPn tied to PWM Event A Output
PWMEB	100101	RPn tied to PWM Event B Output
QEICMP1	100110	RPn tied to QEI1 Comparator Output
QEICMP2	100111	RPn tied to QEI2 Comparator Output
CLC1OUT	101000	RPn tied to CLC1 Output
CLC2OUT	101001	RPn tied to CLC2 Output
OCM7	101010	RPn tied to SCCP7 Output
OCM8	101011	RPn tied to SCCP8 Output
PWMEC	101100	RPn tied to PWM Event C Output
PWMED	101101	RPn tied to PWM Event D Output
PTGTRG24	101110	PTG Trigger Output 24
PTGTRG25	101111	PTG Trigger Output 25
SENT1OUT	110000	RPn tied to SENT1 Output
SENT2OUT	110001	RPn tied to SENT2 Output

TABLE 8-7: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

REGISTE	:R 9-2: CLNI			313 I E K							
R/W-0		R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0				
bit 15							bit				
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1				
_	—	_	—	PLLPRE3 ⁽⁴⁾	PLLPRE2 ⁽⁴⁾	PLLPRE1 ⁽⁴⁾	PLLPRE0 ⁽⁴				
bit 7							bit				
Legend:		r = Reserved	bit								
R = Read	able bit	W = Writable		U = Unimplem	nented bit, read	d as '0'					
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15	ROI: Recove	r on Interrupt bi	t								
				he processor cl	ock, and the pe	ripheral clock ra	atio is set to 1				
		s have no effec									
bit 14-12	DOZE<2:0>:	Processor Cloc	ck Reduction S	elect bits ⁽¹⁾							
	111 = F P divi										
	110 = F P divi										
		101 = FP divided by 32									
		100 = FP divided by 16 011 = FP divided by 8 (default)									
			ult)								
	010 = FP divi										
	001 = FP divi 000 = FP divi										
bit 11		e Mode Enable	bit(2,3)								
				ween the peripl	heral clocks ar	nd the processo	r clocks				
				atio is forced to							
bit 10-8	FRCDIV<2:0	>: Internal Fast	RC Oscillator	Postscaler bits							
		ivided by 256									
	110 = FRC d										
	101 = FRC d										
	100 = FRC d										
	011 = FRC d	ivided by 8									
	010 = FRC d	ivided by 4									
	001 = FRC d										
		ivided by 1 (def	-								
bit 7-6	-	ted: Read as '	כ'								
bit 5-4	Reserved: R	ead as '0'									
Note 1:	The DOZE<2:0> DOZE<2:0> are i		e written to who	en the DOZEN	bit is clear. If E	OZEN = 1, any	/ writes to				
2:	This bit is cleared	d when the ROI	bit is set and a	an interrupt occ	urs.						
3:	The DOZEN bit c set the DOZEN b		DOZE<2:0> =	000. If DOZE<2	2: 0> = 000, an	y attempt by us	er software t				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

11.2 Can Control Registers

REGISTER 11-1: C1CONH: CAN CONTROL REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	S/HC-0	R/W-1	R/W-0	R/W-0
TXBWS3	TXBWS2	TXBWS1	TXBWS0	ABAT	REQOP2	REQOP1	REQOP0
bit 15							bit 8

R-1	R-0	R-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
OPMOD2	OPMOD1	OPMOD0	TXQEN ⁽¹⁾	STEF ⁽¹⁾	SERRLOM ⁽¹⁾	ESIGM ⁽¹⁾	RTXAT ⁽¹⁾
bit 7							bit 0

Legend:	S = Settable bit	able bit HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 **TXBWS<3:0>:** Transmit Bandwidth Sharing bits

	1111-1100 = 4096 1011 = 2048 1010 = 1024 1001 = 512 1000 = 256 0111 = 128 0110 = 64 0101 = 32 0100 = 16 0011 = 8 0010 = 4 0001 = 2 0000 = No delay
bit 11	ABAT: Abort All Pending Transmissions bit
	 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	 111 = Sets Restricted Operation mode 110 = Sets Normal CAN 2.0 mode; error frames on CAN FD frames 101 = Sets External Loopback mode 100 = Sets Configuration mode 011 = Sets Listen Only mode 010 = Sets Internal Loopback mode 001 = Sets Internal Loopback mode 001 = Sets Disable mode 000 = Sets Normal CAN FD mode; supports mixing of full CAN FD and classic CAN 2.0 frames
bit 7-5	OPMOD<2:0>: Operation Mode Status bits
	 111 = Module is in Restricted Operation mode 110 = Module is in Normal CAN 2.0 mode; error frames on CAN FD frames 101 = Module is in External Loopback mode 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Internal Loopback mode 010 = Module is in Internal Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal CAN FD mode; supports mixing of full CAN FD and classic CAN 2.0 frames

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

R/W-0	R/W-0	R/C-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
DLCMM	ESI	DCRCERR	DSTUFERR	DFORMERR	0-0	DBIT1ERR	DBIT0ERR
bit 15	E31	DCRCERK	DSTOFERR	DFORMERR		DBITIERK	bit 8
							DILO
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBOERR		NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR
bit 7		NOROERIK	NOTOT ENT		IN ORLINE	NOT LET	bit 0
Sit 1							Sit 0
Legend:		C = Clearable	bit				
R = Readab	ole bit	W = Writable b		U = Unimpleme	ented bit. read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkno	own
bit 15	DLCMM: DLC	Mismatch bit					
	During a trans	mission or recep	otion, the specif	fied DLC is large	r than the PLSI	ZE<2:0> of the	FIFO element.
bit 14	ESI: ESI Flag	of a Received C	CAN FD Messa	ge Set bit			
bit 13	DCRCERR: S	ame as for nom	inal bit rate				
bit 12	DSTUFERR: S	Same as for nor	ninal bit rate				
bit 11	DFORMERR:	Same as for no	minal bit rate				
bit 10	Unimplement	ed: Read as '0'					
bit 9	DBIT1ERR: S	ame as for nom	inal bit rate				
bit 8	DBIT0ERR: S	ame as for nom	inal bit rate				
bit 7	TXBOERR: D	evice Went to B	us Off bit (and	auto-recovered))		
bit 6	Unimplement	ed: Read as '0'					
bit 5	NCRCERR: R	eceived Messa	ge with CRC In	correct Checksu	ım bit		
		cksum of a rece CRC calculate	•	was incorrect.	The CRC of ar	incoming mes	sage does not
bit 4	NSTUFERR: F	Received Messa	age with Illegal	Sequence bit			
	More than 5 ec	lual bits in a seq	uence have occ	urred in a part of	a received mes	sage where this	s is not allowed.
bit 3	NFORMERR:	Received Fram	e Fixed Format	t bit			
	A fixed format	part of a receiv	ed frame has th	ne wrong format			
bit 2	NACKERR: T	ransmitted Mes	sage Not Ackno	owledged bit			
	Transmitted m	essage was no	t acknowledged	d.			
bit 1	NBIT1ERR: T	ransmitted Mes	sage Recessive	e Level bit			
	NBIT1ERR: Transmitted Message Recessive Level bit During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value '1'), but the monitored bus value was dominant.						
bit 0	NBIT0ERR: T	ransmitted Mes	sage Dominant	Level bit			
	wanted to send recessive. Dur monitored. The	d a dominant lev ring bus off reco	vel (data or ider overy, this statu CPU to monitor	cknowledge bit, ntifier bit of logic is is set each tin the proceeding isly disturbed).	al value '0'), bu ne a sequence	t the monitored of 11 recessive	bus value was bits has been

REGISTER 11-48: C1BDIAG1H: CAN BUS DIAGNOSTICS REGISTER 1 HIGH

REGISTER 12-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH (CONTINUED)

- bit 6 **TRGMOD:** PWM Generator Trigger Mode Selection bit 1 = PWM Generator operates in Retriggerable mode
 - 0 = PWM Generator operates in Single Trigger mode
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 SOCS<3:0>: Start-of-Cycle Selection bits^(1,2,3)
 - 1111 = TRIG bit or PCI Sync function only (no hardware trigger source is selected)
 - 1110-0101 = Reserved
 - 0100 = Trigger output selected by PG4 or PG8 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
 - 0011 = Trigger output selected by PG3 or PG7 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
 - 0010 = Trigger output selected by PG2 or PG6 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
 - 0001 = Trigger output selected by PG1 or PG5 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
 - 0000 = Local EOC PWM Generator is self-triggered
- **Note 1:** The PCI selected Sync signal is always available to be OR'd with the selected SOC signal per the SOCS<3:0> bits if the PCI Sync function is enabled.
 - 2: The source selected by the SOCS<3:0> bits MUST operate from the same clock source as the local PWM Generator. If not, the source must be routed through the PCI Sync logic so the trigger signal may be synchronized to the PWM Generator clock domain.
 - **3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 13-25: ADSTATL: ADC DATA READY STATUS REGISTER LOW

R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
			AN<15	:8>RDY			
bit 15							bit 8
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
			AN<7:	0>RDY			
bit 7							bit 0
Legend:		U = Unimplem	nented bit, read	d as '0'			
R = Readable bit W = Writable bit			oit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 AN<15:0>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 13-26: ADSTATH: ADC DATA READY STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC
_	—	—	_	—	—	AN<25:	24>RDY
bit 15	•						bit 8
R-0, HSC							
			AN<23:	16>RDY			
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AN<25:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUDEN ⁽¹	I) SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1(4)	AUDMOD0(4)
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	bit	U = Unimpleme	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	iown
bit 15	1 = Audio pro this modu		d; MSTEN co if FRMEN = 1	1) ntrols the directio ., FRMSYNC = M		•	
	0 = Audio pro	otocol is disable	d				
bit 14		•		Read Data Enabl	e bit		
		RX FIFO is sig					
		RX FIFO is no	•	ed			
bit 13	0	ore Receive Ov				=.=	
	by the red	e Overflow (RC ceive data a critical error		critical error; duri	ng ROV, data	in the FIFO is r	not overwritter
bit 12	IGNTUR: Igno	ore Transmit Ur	derrun bit				
	until the S	nit Underrun (T SPIxTXB is not a critical error f	empty	a critical error and	data indicate	ed by URDTEN	is transmitted
bit 11		Audio Data Fori	-	-			
		a is mono (i.e.,		ord is transmitted	on both left ar	nd right channel	s)
bit 10	URDTEN: Tra	ansmit Underrur	n Data Enable	e bit ⁽³⁾			
			0	ter during Transn g Transmit Under			
bit 9-8	AUDMOD<1:	0>: Audio Proto	col Mode Se	lection bits ⁽⁴⁾			
	01 = Left Just	stified mode: Tl ified mode: Thi	s module fund	nctions as if SPIF ctions as if SPIFE f SPIFE = 0, rega	= 1, regardle	ss of its actual	
bit 7	FRMEN: Fran	ned SPIx Supp	ort bit				
		Plx support is e Plx support is o		pin is used as the	e FSYNC inpu	it/output)	
2:	AUDEN can only AUDMONO can URDTEN is only	only be written	when the SPI		only valid for	AUDEN = 1.	
4:	AUDMOD<1:0> 0			SPIEN bit = 0 ar			= 1. When

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

NOTES:

REGISTER 26-2: IBIASCONH: CURRENT BIAS GENERATOR 50 µA CURRENT SOURCE CONTROL HIGH REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	SHRSRCEN3	SHRSNKEN3	GENSRCEN3	GENSNKEN3	SRCEN3	SNKEN3
bit 15							bit 8
	11.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
U-0	U-0	-	_	GENSRCEN2	GENSNKEN2	R/W-0 SRCEN2	R/W-0 SNKEN2
bit 7	_	SHRSRUENZ	SURSINCENZ	GENGRGENZ	GENSINKEINZ	SRCENZ	bit 0
Legend:							
R = Readable	e bit	W = Writable bi	it	U = Unimpleme	ented bit, read a	s '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown
bit 15-14	-	nted: Read as '0					
bit 13		I3: Share Source Current Mirror r		•	co from anothor	courco)	
		Current Mirror r				source)	
bit 12	•	I 3: Share Sink E					
		Current Mirror m			e from another s	ource)	
L:1 44	•	Current Mirror m					
bit 11		I3: Generated So generates the cur		•			
		loes not generat			erence		
bit 10	GENSNKEN	13: Generated Si	nk Enable for (Output #3 bit			
		generates the cu loes not generat			erence		
bit 9	SRCEN3: So	ource Enable for	Output #3 bit				
		source is enable source is disable					
bit 8	SNKEN3: Si	ink Enable for Ou	utput #3 bit				
		sink is enabled sink is disabled					
bit 7-6	Unimpleme	nted: Read as '0)'				
bit 5		2: Share Source		•			
		g Current Mirror r g Current Mirror r			ce from another	source)	
bit 4		2: Share Sink E	•				
		Current Mirror me Current Mirror me			e from another s	ource)	
bit 3	GENSRCEN	12: Generated So	ource Enable f	or Output #2 bit			
		penerates the cur loes not generat			erence		
bit 2	GENSNKEN	12: Generated Si	nk Enable for (Output #2 bit			
		penerates the cur loes not generat			erence		
bit 1	SRCEN2: So	ource Enable for	Output #2 bit				
		source is enable source is disable					
bit 0	SNKEN2: Si	ink Enable for Ou	utput #2 bit				
		sink is enabled sink is disabled					

27.1 Operational Amplifier Control Registers

							1
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
AMPON	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	AMPEN3	AMPEN2	AMPEN1
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15	AMPON: Op	Amp Enable/O	n bit				
				ective AMPEN	Ix bits are also a	asserted	
		all op amp mo					
bit 14-3	Unimplemen	ted: Read as '	0'				
bit 2	AMPEN3: Op	o Amp #3 Enab	le bit				
		Op Amp #3 if th	he AMPON bi	t is also assert	ed		
	0 = Disables						
bit 1 AMPEN2: Op Amp #2 Enable bit							
	1 = Enables 0 = Disables	Op Amp #2 if th	he AMPON bi	t is also assert	ed		
bit 0		Amp #1 Enab	la hit				
		Op Amp #1 Enab		t is also assert	ed		
	0 = Disables						

REGISTER 27-1: AMPCON1L: OP AMP CONTROL REGISTER LOW

REGISTER 30-15: FALTREG CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 **CTXT1<2:0>:** Specifies the Alternate Working Register Set #1 with Interrupt Priority Levels (IPL) bits 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 = Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1

REGISTER 30-16: FBTSEQ CONFIGURATION REGISTER

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ10	IBSEQ9	IBSEQ8	IBSEQ7	IBSEQ6	IBSEQ5	IBSEQ4
•	•	•		•		bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ2	IBSEQ1	IBSEQ0	BSEQ11	BSEQ10	BSEQ9	BSEQ8
	•			•		bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
BSEQ6	BSEQ5	BSEQ4	BSEQ3	BSEQ2	BSEQ1	BSEQ0
•	•	•		•		bit 0
	R/PO-1 IBSEQ2 R/PO-1	IBSEQ10 IBSEQ9 R/PO-1 R/PO-1 IBSEQ2 IBSEQ1 R/PO-1 R/PO-1	IBSEQ10 IBSEQ9 IBSEQ8 R/PO-1 R/PO-1 R/PO-1 IBSEQ2 IBSEQ1 IBSEQ0 R/PO-1 R/PO-1 R/PO-1	IBSEQ10IBSEQ9IBSEQ8IBSEQ7R/PO-1R/PO-1R/PO-1R/PO-1IBSEQ2IBSEQ1IBSEQ0BSEQ11R/PO-1R/PO-1R/PO-1R/PO-1	IBSEQ10 IBSEQ9 IBSEQ8 IBSEQ7 IBSEQ6 R/PO-1 R/PO-1 R/PO-1 R/PO-1 IBSEQ2 IBSEQ1 IBSEQ0 BSEQ11 BSEQ10 R/PO-1 R/PO-1 R/PO-1 R/PO-1	IBSEQ10 IBSEQ9 IBSEQ8 IBSEQ7 IBSEQ6 IBSEQ5 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 IBSEQ2 IBSEQ1 IBSEQ0 BSEQ11 BSEQ10 BSEQ9 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	i as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-12 **IBSEQ<11:0>:** Inverse Boot Sequence Number bits (Dual Partition modes only) The one's complement of BSEQ<11:0>; must be calculated by the user and written into device programming.

bit 11-0 **BSEQ<11:0>:** Boot Sequence Number bits (Dual Partition modes only) Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

TABLE 33-7: POWER-DOWN CURRENT (IPD)⁽²⁾

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Characteristic Typ \'/ Max Units Conditions						
DC60	Base Power-Down Current	270	383	μA	-40°C		
		418.99	770	μA	+25°C	3.3V	
		939.53	3820	μA	+85°C		
		5.59	14.95	mA	+125°C ⁽³⁾		

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

- 2: Base Sleep current (IPD) is measured as follows:
 - OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC<2>) = 0)
 - FSCM is disabled (FCKSM<1:0> (FOSC<7:6>) = 01)
 - Watchdog Timer is disabled (FWDT<15> = 0 and WDTCONL<15> = 0)
 - All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
 - JTAG is disabled (JTAGEN (FICD<5>) = 0)
 - The regulators are in Standby mode (VREGS (RCON<8>) = 0
 - The regulators are in Low-Power mode (LPWREN (VREGCON<15>) = 1
- **3:** The regulators are in High-Power mode (LPWREN (VREGCON<15>) = 0.

TABLE 33-8: DOZE CURRENT (IDOZE)

Operating Conditions: Operating temperature		λ≤+85°C	for Indu	strial	ed)				
Parameter No.	Typ. ⁽¹⁾	Max.	Doze Ratio	Units	Conditions				
DC70	18.19	20	1:2	mA	40%0		70 MIPS		
	12.66	15	1:128	mA	-40°C				
	17.54	20.15	1:2	mA	+25°C	- 3.3V			
	12.39	14.7	1:128	mA					
	17.85	22.1	1:2	mA	+85°C +125°C				
	12.7	16.5	1:128	mA					
	20.32	30.45	1:2	mA					
	15.17	25.05	1:128	mA					
DC71	22.3	25.55	1:2	mA	-40°C +25°C +85°C	- 3.3V	100 MIPS		
	14.83	17.25	1:128	mA					
	21.86	25.05	1:2	mA					
	14.55	16.95	1:128	mA					
	22.16	26.65	1:2	mA					
	14.86	18.7	1:128	mA					
	24.62	35.55	1:2	mA					
	17.31	27.3	1:128	mA	+125°C				

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

FIGURE 33-9: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-29:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

$\begin{array}{l} \mbox{Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	_	_	15	MHz	Using PPS pins	
			_	—	40	MHz	SPIx dedicated pins	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See Parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time	_	—		ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36 TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	Using PPS pins		
		3	_		ns	SPIx dedicated pins		
SP40 TdiV2scH, TdiV2scL	Setup Time of SDIx Data	30	—		ns	Using PPS pins		
	TdiV2scL	Input to SCKx Edge	10	—		ns	SPIx dedicated pins	
SP41	TscH2diL,	diL, Hold Time of SDIx Data	30	—		ns	Using PPS pins	
TscL2diL		Input to SCKx Edge	15	—	—	ns	SPIx dedicated pins	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Dimension Limits			MAX	
Number of Pins	Ν	64			
Pitch	е		0.50 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	5.30 5.40 5.50			
Overall Length	rall Length D 9.00 BS				
Exposed Pad Length	D2	5.30	5.40	5.50	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	80			
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	—	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0° 3.5° 7°			
Overall Width	E	14.00 BSC			
Overall Length	D	14.00 BSC			
Molded Package Width	E1	12.00 BSC			
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B