

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck256mp506t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.4 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33CK256MP508 family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.4.4.1 Multiplier

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.4.4.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/ 16-bit instructions take the same number of cycles to execute. There are additional instructions: DIV2 and DIVF2. Divide instructions will complete in 6 cycles.

3.4.5 DSP ENGINE

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are, ADD, SUB, NEG, MIN and MAX.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (USx)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write-Back			
CLR	A = 0	Yes			
ED	$A = (x - y)^2$	No			
EDAC	$A = A + (x - y)^2$	No			
MAC	$A = A + (x \bullet y)$	Yes			
MAC	$A = A + x^2$	No			
MOVSAC	No change in A	Yes			
MPY	$A = x \bullet y$	No			
MPY	$A = x^2$	No			
MPY.N	$A = -x \bullet y$	No			
MSC	$A = A - x \bullet y$	Yes			

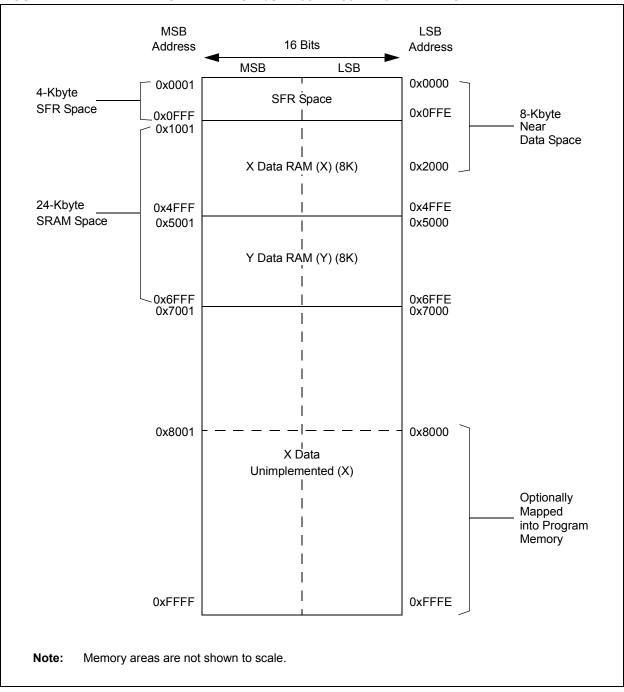


FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33CK256MPX0X DEVICES

5.3.2 ERROR CORRECTING CODE (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code (ECC) functionality as an integral part of the Flash memory controller. ECC can determine the presence of single bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data is written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data is stored in blocks of 48 data bits and 7 parity bits; parity data is not memory-mapped and is inaccessible. When the data is read back, the ECC calculates the parity on it and compares it to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single bit error has occurred and has been automatically corrected on readback.
- Double-bit error has occurred and the read data is not changed.

Single bit error occurrence can be identified by the state of the ECCSBEIF (IFS0<13>) bit. An interrupt can be generated when the corresponding interrupt enable bit is set, ECCSBEIE (IEC0<13>). The ECCSTATL register contains the parity information for single bit errors. The SECOUT<7:0> bits field contains the expected calculated SEC parity and the SECIN<7:0> bits contain the actual value from a Flash read operation. The SECSYNDx bits (ECCSTATH<7:0>) indicate the bit position of the single bit error within the 48-bit pair of instruction words. When no error is present, SECINx equals SECOUTx and SECSYNDx is zero.

Double-bit errors result in a generic hard trap. The ECCDBE bit (INTCON4<1>) will be set to identify the source of the hard trap. If no Interrupt Service Routine is implemented for the hard trap, a device Reset will also occur. The ECCSTATH register contains double-bit error status information. The DEDOUT bit is the expected calculated DED parity and DEDIN is the actual value from a Flash read operation. When no error is present, DEDIN equals DEDOUT.

5.3.3 ECC FAULT INJECTION

To test Fault handling, an EEC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies it prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to it being written into the target Flash and will cause an EEC error on a subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load the Flash target address into the ECCADDR register.
- Select 1st Fault bit determined by FLT1PTRx (ECCCONH<7:0>). The target bit is inverted to create the Fault.
- If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH<15:8>), otherwise set to all '1's.
- 4. Write the NVMKEY unlock sequence (see Section 5.5.3 "Program Flash Memory Control Registers").
- 5. Enable the ECC Fault injection logic by setting the FLTINJ bit (ECCCONL<0>).
- 6. Perform a read or write to the Flash target address.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15		•					bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
		a a:					

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0		
_	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0		
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	•	ted: Read as '							
bit 13	VHOLD: Vect	tor Number Ca	oture Enable b	oit					
			l current value	of vector numb	per encoding tree	e (i.e., highest p	riority pending		
	interrupt)		nto VECNII IM<	7·0> at Interru	pt Acknowledge	and retained u	Intil nevt IACk		
bit 12		ted: Read as '			ipt Acknowledge				
bit 11-8	-	ew CPU Interru		ol bite					
bit 11-0		Interrupt Priorit	•						
		interrupt i nom							
		Interrupt Priorit	-						
		Interrupt Priorit	5						
bit 7-0		0>: Vector Nun		g Interrupt bits	6				
		255, Reserved	; do not use						
		9, IC1 – Input (Capture 1						
	00001000 = 8, INTO – External Interrupt 0								
	00000111 = 7, Reserved; do not use 00000110 = 6, Generic soft error trap								
		 Generic soft Reserved; d 							
		4, Math error tr							
	00000011 =	3, Stack error t	rap						
		2, Generic har							
		1, Address erro 0, Oscillator fai							
	- 00000000 -	o, Oscillator Idi	iuap						

8.5.10 PERIPHERAL PIN SELECT REGISTERS

REGISTER 8-13: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	—	_	_	IOLOCK	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			-	-		_	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11 IOLOCK: Peripheral Remapping Register Lock bit

 $\ensuremath{\mathtt{1}}$ = All Peripheral Remapping registers are locked and cannot be written

 $\ensuremath{\scriptscriptstyle 0}$ = All Peripheral Remapping registers are unlocked and can be written

bit 10-0 Unimplemented: Read as '0'

Note 1: Writing to this register needs an unlock sequence.

REGISTER 8-14: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT1R7 | INT1R6 | INT1R5 | INT1R4 | INT1R3 | INT1R2 | INT1R1 | INT1R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| U-0 |
| — | | | — | _ | — | — | |

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **INT1R<7:0>:** Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 Unimplemented: Read as '0'

bit 7

9.5 Oscillator Configuration

The oscillator system has both Configuration registers and SFRs to configure, control and monitor the system. The FOSCSEL and FOSC Configuration registers (Register 30-4 and Register 30-5, respectively) are used for initial setup. Table 9-1 lists the configuration settings that select the device's oscillator source and operating mode at a Power-on Reset (POR).

TABLE 9-1:	CONFIGURATION BIT VALUES FOR CLOCK SELECTION
------------	--

Oscillator Source	Oscillator Mode	FNOSC<2:0> Value	POSCMD<1:0> Value	Notes
S0	Fast RC Oscillator (FRC)	000	xx	1
S1	Fast RC Oscillator with PLL (FRCPLL)	001	xx	1
S2	Primary Oscillator (EC)	010	00	1
S2	Primary Oscillator (XT)	010	01	
S2	Primary Oscillator (HS)	010	10	
S3	Primary Oscillator with PLL (ECPLL)	011	00	1
S3	Primary Oscillator with PLL (XTPLL)	011	01	
S3	Primary Oscillator with PLL (HSPLL)	011	10	
S4	Reserved	100	xx	
S5	Low-Power RC Oscillator (LPRC)	101	xx	1
S6	Backup FRC (BFRC)	110	xx	1
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	XX	1, 2

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 11-49: C1BDIAG1L: CAN BUS DIAGNOSTICS REGISTER 1 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EFMSG	CNT<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EFMSG	GCNT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is u		x = Bit is unk	nown		

bit 15-0 EFMSGCNT<15:0>: Error Free Message Counter bits

NOTES:

REGISTER 12-27: PGxTRIGA: PWM GENERATOR x TRIGGER A REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGxTF	RIGA<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGxT	RIGA<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bi	t	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown			

bit 15-0 **PGxTRIGA<15:0>:** PWM Generator x Trigger A Register bits

REGISTER 12-28: PGxTRIGB: PWM GENERATOR x TRIGGER B REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTF	RIGB<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxT	RIGB<7:0>			
bit 7							bit 0
Legend:							
•							
R = Readable	e bit	W = Writable bi	t	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0 PGxTRIGB<15:0>: PWM Generator x Trigger B Register bits

REGISTER 12-29: PGxTRIGC: PWM GENERATOR x TRIGGER C REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTF	RIGC<15:8>			
bit 15							bit 8
				54446		54446	-
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxT	RIGC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			own	

bit 15-0 PGxTRIGC<15:0>: PWM Generator x Trigger C Register bits

REGISTER 13-27: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 25; n = 0 TO 6)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8	TRGSRC(x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits (TRGSRC1 to TRGSRC25 – Odd)
	11111 = ADTRG31 (PPS input)
	11110 = PTG
	11101 = CLC2
	11100 = CLC1
	11011 = MCCP9
	11010 = SCCP7
	11001 = SCCP6
	11000 = SCCP5
	10111 = SCCP4
	10110 = SCCP3
	10101 = SCCP2
	10100 = SCCP1
	10011 = PWM8 Trigger 2
	10010 = PWM8 Trigger 1
	10001 = PWM7 Trigger 2
	10000 = PWM7 Trigger 1
	01111 = PWM6 Trigger 2
	01110 = PWM6 Trigger 1
	01101 = PWM5 Trigger 2
	01100 = PWM5 Trigger 1
	01011 = PWM4 Trigger 2
	01010 = PWM4 Trigger 1
	01001 = PWM3 Trigger 2
	01000 = PWM3 Trigger 1
	00111 = PWM2 Trigger 2
	00110 = PWM2 Trigger 1
	00101 = PWM1 Trigger 2
	00100 = PWM1 Trigger 1
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger 00000 = No trigger is enabled
hit 7_5	Unimplemented: Read as '0'

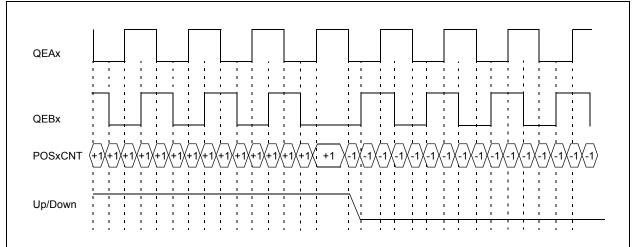
bit 7-5 Unimplemented: Read as '0'

REGISTER 13-27: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 25; n = 0 TO 6) (CONTINUED)

bit 4-0 TRGSRCx<4:0>: Common Interrupt Enable for Corresponding Analog Inputs bits (TRGSRC0 to TRGSRC24 – Even) 11111 = ADTRG31 (PPS input) 11110 = PTG 11101 = CLC2 11100 = CLC1 11011 = MCCP9 11010 = SCCP7 11001 = SCCP6 11000 = SCCP5 10111 = SCCP4 10110 = SCCP3 10101 = SCCP2 10100 = SCCP1 10011 = PWM8 Trigger 2 10010 = PWM8 Trigger 1 10001 = PWM7 Trigger 2 10000 = PWM7 Trigger 1 01111 = PWM6 Trigger 2 01110 = PWM6 Trigger 1 01101 = PWM5 Trigger 2 01100 = PWM5 Trigger 1 01011 = PWM4 Trigger 2 01010 = PWM4 Trigger 1 01001 = PWM3 Trigger 2 01000 = PWM3 Trigger 1 00111 = PWM2 Trigger 2 00110 = PWM2 Trigger 1 00101 = PWM1 Trigger 2 00100 = PWM1 Trigger 1 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger 00000 = No trigger is enabled

15.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (DS70000601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).


The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK256MP508 family implements 2 instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 15-1 illustrates the Quadrature Encoder Interface signals.

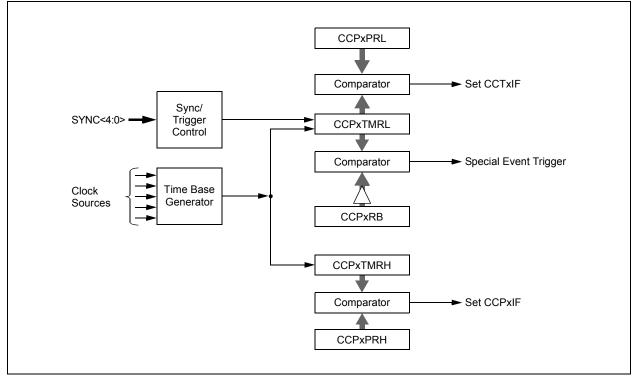
The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 15-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.

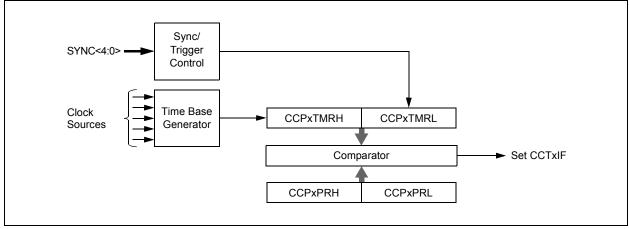
FIGURE 15-1: QUADRATURE ENCODER INTERFACE SIGNALS

18.4 Control Registers

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW


I2CEN pit 15	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
oit 15		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN			
				•			bit			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
Dit 7	STILLIN	AGRUT	AGNEN	NOLN		NOLIN	bit			
Legend:		HC = Hardware	e Clearable bit							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'				
n = Value at l	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
oit 15	12CEN: 12Cx	Enable bit (writa	able from softwa	are only)						
	1 = Enables t	the I2Cx module	, and configure	s the SDAx and		serial port pins	5			
oit 14	Unimplemen	ted: Read as '0	,							
oit 13	I2CSIDL: I2C	x Stop in Idle M	ode bit							
		ues module ope s module operat			e mode					
oit 12	SCLREL: SC	Lx Release Cor	ntrol bit (I ² C Sla	ive mode only) ⁽	1)					
		the SCLx clock								
	If STREN = 1									
		e may write '0' to	initiate a clock	stretch and wri	ite '1' to release	e the clock. Har	dware clea			
		ing of every Sla reception. Hard					every Slav			
	If STREN = 0									
		e may only write smission. Hard								
oit 11	-	K Strict Reserve		-						
	(In Slave	erved addressir Mode) – The de	evice doesn't re				sses falling			
		gory are NACKe ar Mode) – The		ed to generate :	addresses with	reserved addr	ess snace			
	 (In Master Mode) – The device is allowed to generate addresses with reserved address space. 0 = Reserved addressing would be Acknowledged. 									
		Mode) – The c								
		ere is a match w er Mode) – Rese		eserved addres	ses, the device	e will generate	an ACK.			
		Slave Address								
oit 10		is a 10-bit Slav	•							
pit 10										
oit 10	0 = 120 xADD	is a 7-bit Slave	address							
oit 10 oit 9	DISSLW: Sle	w Rate Control	Disable bit							
	DISSLW: Sle		Disable bit led for Standar		•	disabled for 1	MHz mode)			

2: Automatically cleared to '0' at the beginning of Slave transmission.


NOTES:

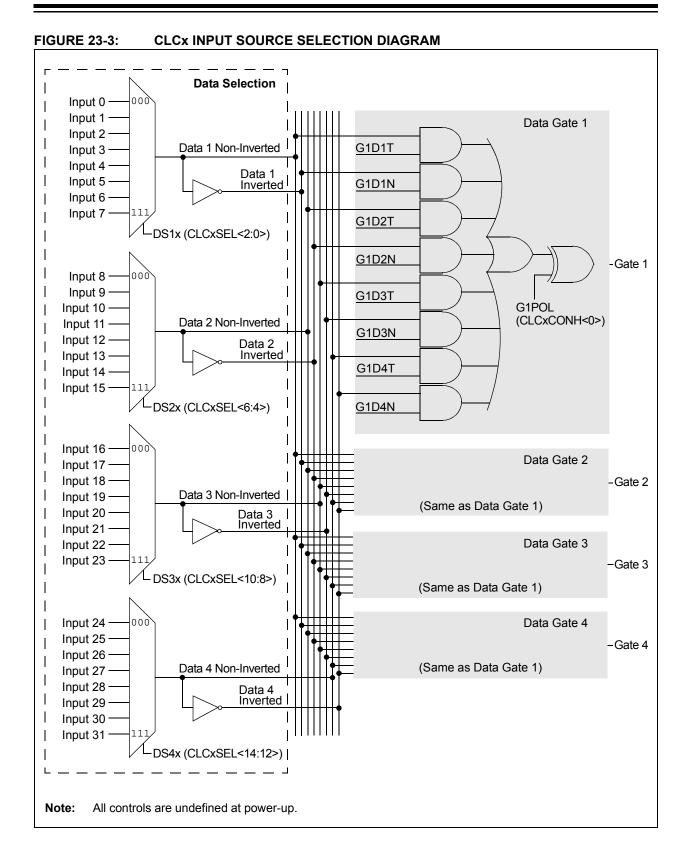

dsPIC33CK256MP508 FAMILY

FIGURE 22-3: DUAL 16-BIT TIMER MODE

FIGURE 22-4: 32-BIT TIMER MODE

REGISTER 30-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	it, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware
	0 = WDT controller via the ON bit (WDTCONL<15>)
bit 14-10	SWDTPS<4:0>: Sleep Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
bit 7	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL<1:0>: Watchdog Timer Clock Select bits
	11 = LPRC clock
	10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC
	00 = Reserved
bit 4-0	RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2

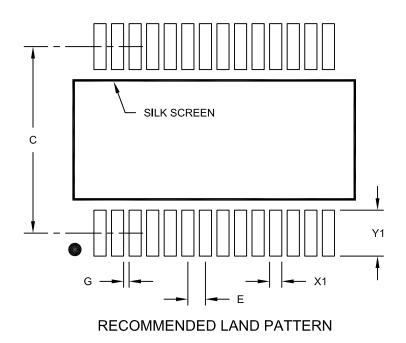

Base Instr #	Assembly Mnemonic			# of Words	# of Cycles ⁽¹⁾	Status Flags Affected	
1	ADD			Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None
8	BOOTSWP	BOOTSWP		Swap the Active and Inactive Program Flash Space	None		

TABLE 31-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.
 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A