



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 100MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT               |
| Number of I/O              | 21                                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 8K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 12x12b; D/A 3x12b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                                   |
| Supplier Device Package    | 28-SSOP                                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck32mp202t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33CK256MPX0X DEVICES

# 5.3.2 ERROR CORRECTING CODE (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code (ECC) functionality as an integral part of the Flash memory controller. ECC can determine the presence of single bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data is written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data is stored in blocks of 48 data bits and 7 parity bits; parity data is not memory-mapped and is inaccessible. When the data is read back, the ECC calculates the parity on it and compares it to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single bit error has occurred and has been automatically corrected on readback.
- Double-bit error has occurred and the read data is not changed.

Single bit error occurrence can be identified by the state of the ECCSBEIF (IFS0<13>) bit. An interrupt can be generated when the corresponding interrupt enable bit is set, ECCSBEIE (IEC0<13>). The ECCSTATL register contains the parity information for single bit errors. The SECOUT<7:0> bits field contains the expected calculated SEC parity and the SECIN<7:0> bits contain the actual value from a Flash read operation. The SECSYNDx bits (ECCSTATH<7:0>) indicate the bit position of the single bit error within the 48-bit pair of instruction words. When no error is present, SECINx equals SECOUTx and SECSYNDx is zero.

Double-bit errors result in a generic hard trap. The ECCDBE bit (INTCON4<1>) will be set to identify the source of the hard trap. If no Interrupt Service Routine is implemented for the hard trap, a device Reset will also occur. The ECCSTATH register contains double-bit error status information. The DEDOUT bit is the expected calculated DED parity and DEDIN is the actual value from a Flash read operation. When no error is present, DEDIN equals DEDOUT.

# 5.3.3 ECC FAULT INJECTION

To test Fault handling, an EEC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies it prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to it being written into the target Flash and will cause an EEC error on a subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load the Flash target address into the ECCADDR register.
- Select 1st Fault bit determined by FLT1PTRx (ECCCONH<7:0>). The target bit is inverted to create the Fault.
- If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH<15:8>), otherwise set to all '1's.
- 4. Write the NVMKEY unlock sequence (see Section 5.5.3 "Program Flash Memory Control Registers").
- 5. Enable the ECC Fault injection logic by setting the FLTINJ bit (ECCCONL<0>).
- 6. Perform a read or write to the Flash target address.

# TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

|                                       | Vector  | IRQ     |                   | Interrupt Bit Location |          |              |  |
|---------------------------------------|---------|---------|-------------------|------------------------|----------|--------------|--|
| Interrupt Source                      | #       | #       | IVT Address       | Flag                   | Enable   | Priority     |  |
| ADCAN0 – ADC AN0 Interrupt            | 99      | 91      | 0x0000CA          | IFS5<11>               | IEC5<11> | IPC22<14:12> |  |
| ADCAN1 – ADC AN1 Interrupt            | 100     | 92      | 0x0000CC          | IFS5<12>               | IEC5<12> | IPC23<2:0>   |  |
| ADCAN2 – ADC AN2 Interrupt            | 101     | 93      | 0x0000CE          | IFS5<13>               | IEC5<13> | IPC23<6:4>   |  |
| ADCAN3 – ADC AN3 Interrupt            | 102     | 94      | 0x0000D0          | IFS5<14>               | IEC5<14> | IPC23<10:8>  |  |
| ADCAN4 – ADC AN4 Interrupt            | 103     | 95      | 0x0000D2          | IFS5<15>               | IEC5<15> | IPC23<14:12> |  |
| ADCAN5 – ADC AN5 Interrupt            | 104     | 96      | 0x0000D4          | IFS6<0>                | IEC6<0>  | IPC24<2:0>   |  |
| ADCAN6 – ADC AN6 Interrupt            | 105     | 97      | 0x0000D6          | IFS6<1>                | IEC6<1>  | IPC24<6:4>   |  |
| ADCAN7 – ADC AN7 Interrupt            | 106     | 98      | 0x0000D8          | IFS6<2>                | IEC6<2>  | IPC24<10:8>  |  |
| ADCAN8 – ADC AN8 Interrupt            | 107     | 99      | 0x0000DA          | IFS6<3>                | IEC6<3>  | IPC24<14:12> |  |
| ADCAN9 – ADC AN9 Interrupt            | 108     | 100     | 0x0000DC          | IFS6<4>                | IEC6<4>  | IPC25<2:0>   |  |
| ADCAN10 – ADC AN10 Interrupt          | 109     | 101     | 0x0000DE          | IFS6<5>                | IEC6<5>  | IPC25<6:4>   |  |
| ADCAN11 – ADC AN11 Interrupt          | 110     | 102     | 0x0000E0          | IFS6<6>                | IEC6<6>  | IPC25<10:8>  |  |
| ADCAN12 – ADC AN12 Interrupt          | 111     | 103     | 0x0000E2          | IFS6<7>                | IEC6<7>  | IPC25<14:12> |  |
| ADCAN13 – ADC AN13 Interrupt          | 112     | 104     | 0x0000E4          | IFS6<8>                | IEC6<8>  | IPC26<2:0>   |  |
| ADCAN14 – ADC AN14 Interrupt          | 113     | 105     | 0x0000E6          | IFS6<9>                | IEC6<9>  | IPC26<6:4>   |  |
| ADCAN15 – ADC AN15 Interrupt          | 114     | 106     | 0x0000E8          | IFS6<10>               | IEC6<10> | IPC26<10:8>  |  |
| ADCAN16 – ADC AN16 Interrupt          | 115     | 107     | 0x0000EA          | IFS6<11>               | IEC6<11> | IPC26<14:12> |  |
| ADCAN17 – ADC AN17 Interrupt          | 116     | 108     | 0x0000EC          | IFS6<12>               | IEC6<12> | IPC27<2:0>   |  |
| ADCAN18 – ADC AN18 Interrupt          | 117     | 109     | 0x0000EE          | IFS6<13>               | IEC6<13> | IPC27<6:4>   |  |
| ADCAN19 – ADC AN19 Interrupt          | 118     | 110     | 0x0000F0          | IFS6<14>               | IEC6<14> | IPC27<10:8>  |  |
| ADCAN20 – ADC AN20 Interrupt          | 119     | 111     | 0x0000F2          | IFS6<15>               | IEC6<15> | IPC27<14:12> |  |
| ADCAN21 – ADC AN21 Interrupt          | 120     | 112     | 0x0000F4          | IFS7<0>                | IEC7<0>  | IPC28<2:0>   |  |
| ADCAN22 – ADC AN22 Interrupt          | 121     | 113     | 0x0000F6          | IFS7<1>                | IEC7<1>  | IPC28<6:4>   |  |
| ADCAN23 – ADC AN23 Interrupt          | 122     | 114     | 0x0000F8          | IFS7<2>                | IEC7<2>  | IPC28<10:8>  |  |
| ADFLT – ADC Fault                     | 123     | 115     | 0x0000FA          | IFS7<3>                | IEC7<3>  | IPC28<14:12> |  |
| ADCMP0 – ADC Digital Comparator 0     | 124     | 116     | 0x0000FC          | IFS7<4>                | IEC7<4>  | IPC29<2:0>   |  |
| ADCMP1 – ADC Digital Comparator 1     | 125     | 117     | 0x0000FE          | IFS7<5>                | IEC7<5>  | IPC29<6:4>   |  |
| ADCMP2 – ADC Digital Comparator 2     | 126     | 118     | 0x000100          | IFS7<6>                | IEC7<6>  | IPC29<10:8>  |  |
| ADCMP3 – ADC Digital Comparator 3     | 127     | 119     | 0x000102          | IFS7<7>                | IEC7<7>  | IPC29<14:12> |  |
| ADFLTR0 – ADC Oversample Filter 0     | 128     | 120     | 0x000104          | IFS7<8>                | IEC7<8>  | IPC30<2:0>   |  |
| ADFLTR1 – ADC Oversample Filter 1     | 129     | 121     | 0x000106          | IFS7<9>                | IEC7<9>  | IPC30<6:4>   |  |
| ADFLTR2 – ADC Oversample Filter 2     | 130     | 122     | 0x000108          | IFS7<10>               | IEC7<10> | IPC30<10:8>  |  |
| ADFLTR3 – ADC Oversample Filter 3     | 131     | 123     | 0x00010A          | IFS7<11>               | IEC7<11> | IPC30<14:12> |  |
| CLC1P – CLC1 Positive Edge            | 132     | 124     | 0x00010C          | IFS7<12>               | IEC7<12> | IPC31<2:0>   |  |
| CLC2P – CLC2 Positive Edge            | 133     | 125     | 0x00010E          | IFS7<13>               | IEC7<13> | IPC31<6:4>   |  |
| SPI1G – SPI1 Error                    | 134     | 126     | 0x000110          | IFS7<14>               | IEC7<14> | IPC31<10:8>  |  |
| SPI2G – SPI2 Error                    | 135     | 127     | 0x000112          | IFS7<15>               | IEC7<15> | IPC31<14:12> |  |
| SPI3G – SPI3 Error                    | 136     | 128     | 0x000114          | IFS8<0>                | IEC8<0>  | IPC32<2:0>   |  |
| Reserved                              | 137-149 | 129-141 | 0x000116-0x00012E | —                      |          |              |  |
| SI2C3 – I2C3 Slave Event              | 150     | 142     | 0x000130          | IFS8<14>               | IEC8<14> | IPC35<10:8>  |  |
| MI2C3 – I2C3 Master Event             | 151     | 143     | 0x000132          | IFS8<15>               | IEC8<15> | IPC35<14:12> |  |
| I2C3BC – I2C3 Bus Collision           | 152     | 144     | 0x000134          | IFS9<0>                | IEC9<0>  | IPC36<2:0>   |  |
| Reserved                              | 153-156 | 145-148 | 0x000136-0x00013C | —                      | _        | _            |  |
| CCP7 – Input Capture/Output Compare 7 | 157     | 149     | 0x00013E          | IFS9<5>                | IEC9<5>  | IPC37<6:4>   |  |
| CCT7 – CCP7 Timer                     | 158     | 150     | 0x000140          | IFS9<6>                | IEC9<6>  | IPC37<10:8>  |  |
| Reserved                              | 159     | 151     | 0x000142          | —                      | —        | _            |  |

# 8.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The PORT registers are located in the SFR.

Some of the key features of the I/O ports are:

- Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- · Operation during Sleep and Idle modes

# 8.1 Parallel I/O (PIO) Ports

All port pins have 12 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 8-1 shows the pin availability. Table 8-2 shows the 5V input tolerant pins across this device.

# TABLE 8-12: PORTE REGISTER SUMMARY

| Register | Bit 15        | Bit 14 | Bit 13 | Bit 12 | Bit 11  | Bit 10 | Bit 9 | Bit 8    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|----------|---------------|--------|--------|--------|---------|--------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANSLE    |               |        |        |        |         |        |       |          |       | -     |       |       |       |       |       |       |
| TRISE    |               |        |        |        |         |        |       | TRISE<15 | :0>   |       |       |       |       |       |       |       |
| PORTE    |               |        |        |        |         |        |       | RE<15:0  | >     |       |       |       |       |       |       |       |
| LATE     |               |        |        |        |         |        |       | LATE<15: | 0>    |       |       |       |       |       |       |       |
| ODCE     |               |        |        |        |         |        |       | ODCE<15  | :0>   |       |       |       |       |       |       |       |
| CNPUE    |               |        |        |        |         |        | (     | CNPUE<1  | 5:0>  |       |       |       |       |       |       |       |
| CNPDE    |               |        |        |        |         |        | (     | CNPDE<15 | 5:0>  |       |       |       |       |       |       |       |
| CNCONE   | ON            | _      | _      | —      | CNSTYLE | —      | _     | _        | _     | —     | _     | _     | —     | _     | —     | _     |
| CNEN0E   |               |        |        |        |         |        | С     | NEN0E<1  | 5:0>  |       |       |       |       |       |       |       |
| CNSTATE  | CNSTATE<15:0> |        |        |        |         |        |       |          |       |       |       |       |       |       |       |       |
| CNEN1E   | CNEN1E<15:0>  |        |        |        |         |        |       |          |       |       |       |       |       |       |       |       |
| CNFE     |               |        |        |        |         |        |       | CNFE<15  | 0>    |       |       |       |       |       |       |       |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U3DSRR7 | U3DSRR6 | U3DSRR5 | U3DSRR4 | U3DSRR3 | U3DSRR2 | U3DSRR1 | U3DSRR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
| U3RXR7  | U3RXR6  | U3RXR5  | U3RXR4  | U3RXR3  | U3RXR2  | U3RXR1  | U3RXR0  |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Legend: |         |         |         |         |         |         |         |

#### REGISTER 8-39: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

| Legena:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

 

 bit 15-8
 U3DSRR<7:0>: Assign UART3 Data-Set-Ready (U3DSR) to the Corresponding RPn Pin bits See Table 8-4.

 bit 7-0
 U3RXR<7:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn Pin bits

# REGISTER 8-40: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

See Table 8-4.

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK3R7 | SCK3R6 | SCK3R5 | SCK3R4 | SCK3R3 | SCK3R2 | SCK3R1 | SCK3R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI3R7 | SDI3R6 | SDI3R5 | SDI3R4 | SDI3R3 | SDI3R2 | SDI3R1 | SDI3R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8SCK3R<7:0>: Assign SPI3 Clock Input (SCK3IN) to the Corresponding RPn Pin bits<br/>See Table 8-4.bit 7-0SDI3R<7:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn Pin bits

bit 7-0 **SDI3R<7:0>:** Assign SPI3 Data input (SDI3) to the Corresponding RPh P See Table 8-4.

| R/W-0            | R/W-0   | R/W-0          | R/W-0   | R/W-0        | R/W-0            | R/W-0   | R/W-0   |
|------------------|---------|----------------|---------|--------------|------------------|---------|---------|
| U3CTSR7          | U3CTSR6 | U3CTSR5        | U3CTSR4 | U3CTSR3      | U3CTSR2          | U3CTSR1 | U3CTSR0 |
| bit 15           | •       |                |         |              |                  |         | bit 8   |
|                  |         |                |         |              |                  |         |         |
| R/W-0            | R/W-0   | R/W-0          | R/W-0   | R/W-0        | R/W-0            | R/W-0   | R/W-0   |
| U2CTSR7          | U2CTSR6 | U2CTSR5        | U2CTSR4 | U2CTSR3      | U2CTSR2          | U2CTSR1 | U2CTSR0 |
| bit 7            | •       |                |         |              |                  |         | bit 0   |
|                  |         |                |         |              |                  |         |         |
| Legend:          |         |                |         |              |                  |         |         |
| R = Readable bit |         | W = Writable I | bit     | U = Unimpler | nented bit, read | as '0'  |         |

## REGISTER 8-53: RPINR49: PERIPHERAL PIN SELECT INPUT REGISTER 49

| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown | R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
|----------------------------------------------------------------------------|-------------------|------------------|-----------------------------|--------------------|
|                                                                            | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8 **U3CTSR<7:0>:** Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U2CTSR<7:0>:** Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits See Table 8-4.

Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 8-7 for peripheral function numbers)

(see Table 8-7 for peripheral function numbers)

| U-0                                | U-0 | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|------------------------------------|-----|--------|-----------------------------------------|--------|--------|--------|--------|
|                                    | —   | RP57R5 | RP57R4                                  | RP57R3 | RP57R2 | RP57R1 | RP57R0 |
| bit 15                             |     |        |                                         |        |        |        | bit 8  |
|                                    |     |        |                                         |        |        |        |        |
| U-0                                | U-0 | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —                                  | —   | RP56R5 | RP56R4                                  | RP56R3 | RP56R2 | RP56R1 | RP56R0 |
| bit 7                              |     |        |                                         |        |        |        | bit 0  |
|                                    |     |        |                                         |        |        |        |        |
| Legend:                            |     |        |                                         |        |        |        |        |
| R = Readable bit W = Writable bit  |     | bit    | U = Unimplemented bit, read as '0'      |        |        |        |        |
| -n = Value at POR '1' = Bit is set |     |        | '0' = Bit is cleared x = Bit is unknown |        |        |        |        |

RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

### REGISTER 8-66: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

| REGISTER 8-67: | <b>RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13</b> |
|----------------|---------------------------------------------------------|

| U-0             | U-0                                      | R/W-0                               | R/W-0          | R/W-0                                   | R/W-0         | R/W-0    | R/W-0  |  |
|-----------------|------------------------------------------|-------------------------------------|----------------|-----------------------------------------|---------------|----------|--------|--|
| _               | —                                        | RP59R5                              | RP59R4         | RP59R3                                  | RP59R2        | RP59R1   | RP59R0 |  |
| bit 15          |                                          |                                     |                |                                         | •             |          | bit 8  |  |
|                 |                                          |                                     |                |                                         |               |          |        |  |
| U-0             | U-0                                      | R/W-0                               | R/W-0          | R/W-0                                   | R/W-0         | R/W-0    | R/W-0  |  |
| —               | —                                        | RP58R5                              | RP58R4         | RP58R3                                  | RP58R2        | RP58R1   | RP58R0 |  |
| bit 7           | ·                                        |                                     |                |                                         |               |          | bit 0  |  |
|                 |                                          |                                     |                |                                         |               |          |        |  |
| Legend:         |                                          |                                     |                |                                         |               |          |        |  |
| R = Readable    | bit                                      | W = Writable                        | bit            | U = Unimplemented bit, read as '0'      |               |          |        |  |
| -n = Value at F | POR                                      | '1' = Bit is set                    |                | '0' = Bit is cleared x = Bit is unknown |               |          | nown   |  |
|                 |                                          |                                     |                |                                         |               |          |        |  |
| bit 15-14       | Unimplemen                               | ted: Read as '                      | 0'             |                                         |               |          |        |  |
| bit 13-8        | <b>RP59R&lt;5:0&gt;</b><br>(see Table 8- | : Peripheral Ou<br>7 for peripheral | Itput Function | is Assigned to bers)                    | RP59 Output F | Pin bits |        |  |
| bit 7-6         | Unimplemented: Read as '0'               |                                     |                |                                         |               |          |        |  |

bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

#### REGISTER 9-8: APLLDIV1: APLL OUTPUT DIVIDER REGISTER

| U-0                                                  | U-0                         | U-0                        | U-0            | U-0                           | U-0              | R/W-0           | R/W-0                 |
|------------------------------------------------------|-----------------------------|----------------------------|----------------|-------------------------------|------------------|-----------------|-----------------------|
| —                                                    | —                           | —                          | —              | —                             | —                | AVCOE           | 0IV<1:0>              |
| bit 15                                               |                             |                            |                |                               |                  |                 | bit 8                 |
|                                                      |                             |                            |                |                               |                  |                 |                       |
| U-0                                                  | R/W-1                       | R/W-0                      | R/W-0          | U-0                           | R/W-0            | R/W-0           | R/W-1                 |
|                                                      | AP                          | 0ST1DIV<2:0> <sup>(1</sup> | ,2)            |                               | APC              | OST2DIV<2:0     | <sub>&gt;</sub> (1,2) |
| bit 7                                                |                             |                            |                |                               |                  |                 | bit 0                 |
|                                                      |                             |                            |                |                               |                  |                 |                       |
| Legend:                                              |                             |                            |                |                               |                  |                 |                       |
| R = Readable bit W = Writable bit                    |                             |                            |                | U = Unimplei                  | mented bit, rea  | d as '0'        |                       |
| -n = Value at POR '1' = Bit is set '0' = Bit is clea |                             |                            |                |                               | eared            | x = Bit is unk  | nown                  |
|                                                      |                             |                            |                |                               |                  |                 |                       |
| bit 15-10                                            | Unimplemen                  | ted: Read as '0'           |                |                               |                  |                 |                       |
| bit 9-8                                              | AVCODIV<1:                  | 0>: APLL VCO C             | utput Divide   | r Select bits                 |                  |                 |                       |
|                                                      | 11 <b>= AF</b> vco          |                            |                |                               |                  |                 |                       |
|                                                      | 10 = AFvco/2                | 2                          |                |                               |                  |                 |                       |
|                                                      | 01 = AFVCO/3 $00 = AFVCO/4$ | 5<br>L                     |                |                               |                  |                 |                       |
| hit 7                                                | Unimplemen                  | ted: Read as '0'           |                |                               |                  |                 |                       |
| bit 6-4                                              |                             |                            | ut Divider #'  | 1 Ratio hite(1,2)             |                  |                 |                       |
| bit 0-4                                              |                             | <2.0>. AI LL Out           | valid value fi | rom 1 to 7 (the               |                  | alue should h   | e areater than        |
|                                                      | or equal to the             | e APOST2DIVx v             | alue). The A   | POST1DIVx div                 | vider is designe | ed to operate a | at higher clock       |
|                                                      | rates than the              | APOST2DIVX di              | viaer.         |                               |                  |                 |                       |
| bit 3                                                | Unimplemen                  | ted: Read as '0'           |                | (1.0)                         |                  |                 |                       |
| bit 2-0                                              | APOST2DIV<                  | <2:0>: APLL Outr           | out Divider #2 | 2 Ratio bits <sup>(1,2)</sup> |                  |                 |                       |

APOST2DIV<2:0> can have a valid value, from 1 to 7 (the APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx values must not be changed while the PLL is operating.
  - 2: The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

# REGISTER 9-11: REFOCONH: REFERENCE CLOCK CONTROL HIGH REGISTER

| U-0               | R/W-0          | R/W-0                    | R/W-0          | R/W-0                              | R/W-0            | R/W-0              | R/W-0 |
|-------------------|----------------|--------------------------|----------------|------------------------------------|------------------|--------------------|-------|
|                   |                |                          |                | RODIV<14:8>                        | •                |                    |       |
| bit 15            |                |                          |                |                                    |                  |                    | bit 8 |
|                   |                |                          |                |                                    |                  |                    |       |
| R/W-0             | R/W-0          | R/W-0                    | R/W-0          | R/W-0                              | R/W-0            | R/W-0              | R/W-0 |
|                   |                |                          | RODI           | V<7:0>                             |                  |                    |       |
| bit 7             |                |                          |                |                                    |                  |                    | bit 0 |
|                   |                |                          |                |                                    |                  |                    |       |
| Legend:           |                |                          |                |                                    |                  |                    |       |
| R = Readable bit  |                | W = Writable t           | pit            | U = Unimplemented bit, read as '0' |                  |                    |       |
| -n = Value at POR |                | '1' = Bit is set         |                | '0' = Bit is cleared               |                  | x = Bit is unknown |       |
|                   |                |                          |                |                                    |                  |                    |       |
| bit 15            | Unimpleme      | nted: Read as '0         | ,              |                                    |                  |                    |       |
| bit 14-0          | RODIV<14:      | 0>: Reference Cl         | ock Integer Di | vider Select bit                   | S                |                    |       |
|                   | Divider for th | ne selected input        | clock source i | is two times the                   | e selected value | <b>.</b>           |       |
|                   | 111 1111       | $1111 1111 = B_{2}$      | ase clock valu | e divided by 65                    | 534 (2 * 7FFF    | h)                 |       |
|                   | 111 1111       | 1111 1110 = B            | ase clock valu | e divided by 65                    | 532 (2 * 7FFF    |                    |       |
|                   | 111 1111       | $1111 110 - D_{0}$       |                | e divided by 65                    | 5,552 (2 711 L   | <br>               |       |
|                   |                | $1111 1101 = \mathbf{D}$ | ase clock valu |                                    | 0,000 (2 / FFL   | (חכ                |       |
|                   | •••            | 0000 0010 D              |                |                                    | (0 + 0)          |                    |       |
|                   | 000 0000       | 0000 0010 = Bi           | ase clock valu | e divided by 4                     | (Z Ž)            |                    |       |
|                   | 0000 0000      | 0000 0001 = Ba           | ase clock valu | e divided by 2                     | (2 ^ 1)          |                    |       |
|                   |                |                          |                | -                                  |                  |                    |       |

000 0000 0000 0000 = Base clock value

# **REGISTER 11-9:** C1TBCH: CAN TIME BASE COUNTER REGISTER HIGH<sup>(1,2)</sup>

| R/W-0           | R/W-0                                                                | R/W-0            | R/W-0                              | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|-----------------|----------------------------------------------------------------------|------------------|------------------------------------|--------|-------|-------|-------|
|                 |                                                                      |                  | TBC<                               | 31:24> |       |       |       |
| bit 15          |                                                                      |                  |                                    |        |       |       | bit 8 |
|                 |                                                                      |                  |                                    |        |       |       |       |
| R/W-0           | R/W-0                                                                | R/W-0            | R/W-0                              | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|                 |                                                                      |                  | TBC<2                              | 23:16> |       |       |       |
| bit 7           |                                                                      |                  |                                    |        |       |       | bit 0 |
|                 |                                                                      |                  |                                    |        |       |       |       |
| Legend:         |                                                                      |                  |                                    |        |       |       |       |
| R = Readable    | bit                                                                  | W = Writable bit | U = Unimplemented bit, read as '0' |        |       |       |       |
| -n = Value at P | - Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr |                  |                                    | nown   |       |       |       |

bit 15-0 **TBC<31:16>** CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

Note 1: The Time Base Counter (TBC) will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

# **REGISTER 11-10:** C1TBCL: CAN TIME BASE COUNTER REGISTER LOW<sup>(1,2)</sup>

| R/W-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |
|-----------|-------|-------|-------|-------|-------|-------|-------|--|--|
| TBC<15:8> |       |       |       |       |       |       |       |  |  |
| bit 15    |       |       |       |       |       |       | bit 8 |  |  |
|           |       |       |       |       |       |       |       |  |  |
| R/W-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |
| TBC<7:0>  |       |       |       |       |       |       |       |  |  |

| Legend:                                                              |                  |                      |                    |  |
|----------------------------------------------------------------------|------------------|----------------------|--------------------|--|
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                  |                      |                    |  |
| -n = Value at POR                                                    | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |  |

bit 15-0 TBC<15:0> CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

**Note 1:** The TBC will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

bit 7

bit 0

## REGISTER 11-38: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH<sup>(1)</sup>

| R-x    | R-x | R-x | R-x    | R-x     | R-x | R-x | R-x   |
|--------|-----|-----|--------|---------|-----|-----|-------|
|        |     |     | FIFOUA | <31:24> |     |     |       |
| bit 15 |     |     |        |         |     |     | bit 8 |
|        |     |     |        |         |     |     |       |
| R-x    | R-x | R-x | R-x    | R-x     | R-x | R-x | R-x   |
|        |     |     | FIFOUA | <23:16> |     |     |       |
| bit 7  |     |     |        |         |     |     | bit 0 |
|        |     |     |        |         |     |     |       |
| Logond |     |     |        |         |     |     |       |

| Legenu.           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |
|                   |                  |                                    |                    |  |  |

bit 15-0 **FIFOUA<31:16>:** FIFO User Address bits <u>TXEN = 1 (FIFO configured as a transmit buffer):</u> A read of this register will return the address where the next message is to be written (FIFO head). <u>TXEN = 0 (FIFO configured as a receive buffer):</u> A read of this register will return the address where the next message is to be read (FIFO tail).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

# REGISTER 11-39: C1FIFOUALx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) LOW<sup>(1)</sup>

| R-x             | R-x | R-x              | R-x                                | R-x              | R-x  | R-x             | R-x   |  |
|-----------------|-----|------------------|------------------------------------|------------------|------|-----------------|-------|--|
|                 |     |                  | FIFOUA                             | <15:8>           |      |                 |       |  |
| bit 15          |     |                  |                                    |                  |      |                 | bit 8 |  |
|                 |     |                  |                                    |                  |      |                 |       |  |
| R-x             | R-x | R-x              | R-x                                | R-x              | R-x  | R-x             | R-x   |  |
|                 |     |                  | FIFOU                              | A<7:0>           |      |                 |       |  |
| bit 7           |     |                  |                                    |                  |      |                 | bit 0 |  |
|                 |     |                  |                                    |                  |      |                 |       |  |
| Legend:         |     |                  |                                    |                  |      |                 |       |  |
| R = Readable    | bit | W = Writable bit | U = Unimplemented bit, read as '0' |                  |      |                 |       |  |
| -n = Value at F | POR | '1' = Bit is set |                                    | '0' = Bit is cle | ared | x = Bit is unkr | nown  |  |

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

| U-0             | U-0                          | U-0              | U-0             | U-0                                                       | U-0              | U-0             | U-0           |  |
|-----------------|------------------------------|------------------|-----------------|-----------------------------------------------------------|------------------|-----------------|---------------|--|
| _               | —                            | _                |                 | _                                                         | —                | _               | _             |  |
| bit 15          |                              |                  |                 |                                                           |                  |                 | bit 8         |  |
|                 |                              |                  |                 |                                                           |                  |                 |               |  |
| R/W-0           | R/W-0                        | R/W-0            | R/W-0           | R/W-0                                                     | R/W-0            | R/W-0           | R/W-0         |  |
| CTB8EN          | CTB7EN                       | CTB6EN           | CTB5EN          | CTB4EN                                                    | CTB3EN           | CTB2EN          | CTB1EN        |  |
| bit 7           |                              |                  |                 |                                                           |                  |                 | bit 0         |  |
|                 |                              |                  |                 |                                                           |                  |                 |               |  |
| Legend:         |                              |                  |                 |                                                           |                  |                 |               |  |
| R = Readable    | bit                          | W = Writable     | bit             | U = Unimple                                               | mented bit, read | as '0'          |               |  |
| -n = Value at P | OR                           | '1' = Bit is set |                 | '0' = Bit is cle                                          | eared            | x = Bit is unkr | nown          |  |
|                 |                              |                  |                 |                                                           |                  |                 |               |  |
| bit 15-8        | Unimplemen                   | ted: Read as '   | 0'              |                                                           |                  |                 |               |  |
| bit 7           | CTB8EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #8 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables<br>0 = Disabled  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
| bit 6           | CTB7EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #7 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables<br>0 = Disabled  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
| bit 5           | CTB6EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #6 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables<br>0 = Disabled  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
| bit 4           | CTB5EN: End                  | able Trigger O   | utput from PW   | M Generator #                                             | #5 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables                  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  | 00            |  |
|                 | 0 = Disabled                 |                  |                 |                                                           |                  |                 |               |  |
| bit 3           | CTB4EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #4 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables:<br>0 = Disabled | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
| bit 2           | CTB3EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #3 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables                  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
|                 | 0 = Disabled                 |                  |                 |                                                           |                  | o               |               |  |
| bit 1           | CIB2EN: Ena                  | able Trigger O   | utput from PW   | VM Generator #2 as Source for Combinational Trigger B bit |                  |                 |               |  |
|                 | 1 = Enables = 0 = Disabled   | specified trigge | er signal to be |                                                           | Compinatonal Tr  | igger B signal  |               |  |
| bit 0           | CTB1EN: Ena                  | able Trigger O   | utput from PW   | M Generator #                                             | #1 as Source for | Combinational   | Trigger B bit |  |
|                 | 1 = Enables                  | specified trigge | er signal to be | OR'd into the                                             | Combinatorial Tr | igger B signal  |               |  |
|                 | 0 = Disabled                 |                  |                 |                                                           |                  |                 |               |  |

# REGISTER 12-8: CMBTRIGH: COMBINATIONAL TRIGGER REGISTER HIGH

| REGISTER 12-13: | PGxCONH: PV | M GENERATOR | <b>x CONTROL</b> | <b>REGISTER HIGH</b> |
|-----------------|-------------|-------------|------------------|----------------------|
|-----------------|-------------|-------------|------------------|----------------------|

| r          |                                  |                                              |                                  |                              |                                  |                            |                          |  |  |  |
|------------|----------------------------------|----------------------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------|--------------------------|--|--|--|
| R/W-0      | R/W-0                            | R/W-0                                        | U-0                              | R/W-0                        | R/W-0                            | R/W-0                      | R/W-0                    |  |  |  |
| MDCSEI     | L MPERSEL                        | MPHSEL                                       | —                                | MSTEN                        | UPMOD2                           | UPMOD1                     | UPMOD0                   |  |  |  |
| bit 15     |                                  |                                              |                                  |                              |                                  |                            | bit 8                    |  |  |  |
|            |                                  |                                              |                                  |                              |                                  |                            |                          |  |  |  |
| r-0        | R/W-0                            | U-0                                          | U-0                              | R/W-0                        | R/W-0                            | R/W-0                      | R/W-0                    |  |  |  |
|            | TRGMOD                           |                                              |                                  | SOCS3 <sup>(1,2,3)</sup>     | SOCS2 <sup>(1,2,3)</sup>         | SOCS1 <sup>(1,2,3)</sup>   | SOCS0 <sup>(1,2,3)</sup> |  |  |  |
| bit 7      |                                  |                                              |                                  |                              |                                  |                            | bit 0                    |  |  |  |
|            |                                  |                                              |                                  |                              |                                  |                            |                          |  |  |  |
| Legend:    |                                  | r = Reserved                                 | bit                              |                              |                                  |                            |                          |  |  |  |
| R = Reada  | able bit                         | W = Writable                                 | bit                              | U = Unimpleme                | ented bit, read as               | '0'                        |                          |  |  |  |
| -n = Value | at POR                           | '1' = Bit is set                             |                                  | '0' = Bit is clear           | red                              | x = Bit is unkno           | own                      |  |  |  |
|            |                                  |                                              |                                  |                              |                                  |                            |                          |  |  |  |
| bit 15     | MDCSEL: N                        | laster Duty Cy                               | cle Register/                    | Select bit                   |                                  |                            |                          |  |  |  |
|            | 1 = PWM G                        | enerator uses                                | MDC registe                      | er                           |                                  |                            |                          |  |  |  |
|            | 0 = PWM G                        | Senerator uses                               | PGxDC regi                       | ister                        |                                  |                            |                          |  |  |  |
| bit 14     | MPERSEL:                         | Master Period                                | Register Se                      | lect bit                     |                                  |                            |                          |  |  |  |
|            | 1 = PWMG                         | enerator uses                                | ENPER regis                      | aister                       |                                  |                            |                          |  |  |  |
| bit 13     | MPHSEL                           | MPHSEL - Master Phase Register Select hit    |                                  |                              |                                  |                            |                          |  |  |  |
| Sit 10     | 1 = PWMG                         | enerator uses                                | MPHASE re                        | aister                       |                                  |                            |                          |  |  |  |
|            | 0 = PWM G                        | enerator uses                                | PGxPHASE                         | register                     |                                  |                            |                          |  |  |  |
| bit 12     | Unimpleme                        | nted: Read a                                 | <b>s</b> 'O'                     |                              |                                  |                            |                          |  |  |  |
| bit 11     | MSTEN: Ma                        | ister Update E                               | nable bit                        |                              |                                  |                            |                          |  |  |  |
|            | 1 = PWM G                        | enerator broa                                | dcasts softwa                    | are set/clear of t           | he UPDREQ statu                  | us bit and EOC             | signal to other          |  |  |  |
|            | PWM G                            | enerators                                    | the sector                       |                              | atatus kit stata ar              |                            |                          |  |  |  |
| h# 40.0    |                                  |                                              |                                  |                              |                                  | EUC signal                 |                          |  |  |  |
| DIT 10-8   | 011 = Slave                      | <b>υ&gt;:</b> PVVIVI Buπ<br>ed immediate i   | er Update ivid<br>Indate         | Dae Selection bit            | S                                |                            |                          |  |  |  |
|            | Data                             | registers imm                                | ediately, or as                  | s soon as possib             | le, when a Master                | update reques              | t is received. A         |  |  |  |
|            | Maste                            | er update requ                               | est will be tra                  | insmitted if MSTE            | EN = 1 and UPDA                  | TE = 1 for the re          | questing PWM             |  |  |  |
|            |                                  | erator.                                      | <b>^</b>                         |                              |                                  |                            |                          |  |  |  |
|            | Data                             | registers at s                               | <del>.</del><br>tart of next o   | cvcle if a Master            | update request                   | is received. A             | master update            |  |  |  |
|            | reque                            | est will be tran                             | smitted if MS                    | TEN = 1 and UF               | PDATE = 1 for the                | requesting PW              | M Generator.             |  |  |  |
|            | 001 = Imme                       | ediate update                                |                                  |                              |                                  |                            |                          |  |  |  |
|            | Data<br>be cl                    | registers imm                                | ediately, or a                   | s soon as possit             | DIE, IT UPDATE = $(IIPDATE = 1)$ |                            | E status bit will be     |  |  |  |
|            | clear                            | ed automatica                                | lly after the u                  | pdate occurs.                | (0  DAIL = 1).                   | THE OF DATE 3              |                          |  |  |  |
|            | 000 = SOC                        | update                                       |                                  |                              |                                  |                            |                          |  |  |  |
|            | Data                             | registers at st                              | art of next PV                   | VM cycle if UPD              | ATE = 1. The UPI                 | DATE status bit            | will be cleared          |  |  |  |
| L:1 7      | autor                            | natically after                              | the update of                    | ccurs.                       |                                  |                            |                          |  |  |  |
|            | Reserved:                        | viaintain as 10                              |                                  |                              |                                  |                            |                          |  |  |  |
| Note 1:    | The PCI selecters SOCS<3:0> bits | ed Sync signa<br>s if the PCI Sv             | l is always av<br>nc function is | ailable to be OR<br>enabled. | 'd with the selecte              | ed SOC signal <sub>l</sub> | per the                  |  |  |  |
| 2:         | The source sele                  | ected by the S                               | OCS<3:0> bi                      | ts MUST operate              | e from the same c                | lock source as t           | the local PWM            |  |  |  |
|            | Generator. If no                 | ot, the source i                             | must be route                    | ed through the P             | CI Sync logic so t               | he trigger signa           | l may be                 |  |  |  |
| -          | synchronized to                  | chronized to the PWM Generator clock domain. |                                  |                              |                                  |                            |                          |  |  |  |

**3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

| SYNC<4:0>   | Synchronization Source                                    |  |  |  |
|-------------|-----------------------------------------------------------|--|--|--|
| 00000       | None; Timer with Rollover on CCPxPR Match or FFFFh        |  |  |  |
| 00001       | Module's Own Timer Svnc Out                               |  |  |  |
| 00010       | Sync Output SCCP2                                         |  |  |  |
| 00011       | Sync Output SCCP3                                         |  |  |  |
| 00100       | Sync Output SCCP4                                         |  |  |  |
| 00101       | Sync Output SCCP5                                         |  |  |  |
| 00110       | Sync Output SCCP6                                         |  |  |  |
| 00111       | Sync Output SCCP7                                         |  |  |  |
| 01000       | Sync Output SCCP8                                         |  |  |  |
| 01001       | INT0                                                      |  |  |  |
| 01010       | INT1                                                      |  |  |  |
| 01011       | INT2                                                      |  |  |  |
| 01100       | UART1 RX Edge Detect                                      |  |  |  |
| 01101       | UART1 TX Edge Detect                                      |  |  |  |
| 01110       | UART2 RX Edge Detect                                      |  |  |  |
| 01111       | UART2 TX Edge Detect                                      |  |  |  |
| 10000       | CLC1 Output                                               |  |  |  |
| 10001       | CLC2 Output                                               |  |  |  |
| 10010       | CLC3 Output                                               |  |  |  |
| 10011       | CLC4 Output                                               |  |  |  |
| 10100       | UART3 RX Edge Detect                                      |  |  |  |
| 10101       | UART3 TX Edge Detect                                      |  |  |  |
| 10110       | Sync Output MCCP9                                         |  |  |  |
| 10111       | Comparator 1 Output                                       |  |  |  |
| 11000       | Comparator 2 Output                                       |  |  |  |
| 11001       | Comparator 3 Output                                       |  |  |  |
| 11010-11110 | Reserved                                                  |  |  |  |
| 11111       | None; Timer with Auto-Rollover (FFFh $\rightarrow$ 0000h) |  |  |  |

# TABLE 22-5: SYNCHRONIZATION SOURCES

# dsPIC33CK256MP508 FAMILY

# REGISTER 22-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS<sup>(1)</sup>

| U-0     | U-0 | U-0   | U-0   | U-0   | U-0   | U-0   | U-0   |
|---------|-----|-------|-------|-------|-------|-------|-------|
| —       | —   | —     | —     | —     | —     | —     | _     |
| bit 15  |     |       |       |       |       |       | bit 8 |
|         |     |       |       |       |       |       |       |
| U-0     | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|         | —   |       |       | DT<   | 5:0>  |       |       |
| bit 7   |     |       |       |       |       |       | bit 0 |
|         |     |       |       |       |       |       |       |
| Legend: |     |       |       |       |       |       |       |

| Logona.           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |
|                   |                  |                             |                    |

## bit 15-6 Unimplemented: Read as '0'

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits

111111 = Inserts 63 dead-time delay periods between complementary output signals
111110 = Inserts 62 dead-time delay periods between complementary output signals
000010 = Inserts 2 dead-time delay periods between complementary output signals
000001 = Inserts 1 dead-time delay period between complementary output signals

000000 = Dead-time logic is disabled

Note 1: This register is implemented in the MCCP9 module only.

# REGISTER 26-3: IBIASCONL: CURRENT BIAS GENERATOR 50 µA CURRENT SOURCE CONTROL LOW REGISTER

| U-0             | U-0                                                                                                                                                        | R/W-0                                | R/W-0                             | R/W-0                               | R/W-0              | R/W-0          | R/W-0  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--------------------|----------------|--------|
|                 |                                                                                                                                                            | SHRSRCEN1                            | SHRSNKEN1                         | GENSRCEN1                           | GENSNKEN1          | SRCEN1         | SNKEN1 |
| bit 15          |                                                                                                                                                            |                                      |                                   |                                     |                    |                | bit 8  |
|                 |                                                                                                                                                            |                                      |                                   |                                     |                    |                |        |
| U-0             | U-0                                                                                                                                                        | R/W-0                                | R/W-0                             | R/W-0                               | R/W-0              | R/W-0          | R/W-0  |
|                 | _                                                                                                                                                          | SHRSRCEN0                            | SHRSNKEN0                         | GENSRCEN0                           | GENSNKEN0          | SRCEN0         | SNKEN0 |
| bit 7           |                                                                                                                                                            |                                      |                                   |                                     |                    |                | bit 0  |
| l egend:        |                                                                                                                                                            |                                      |                                   |                                     |                    |                |        |
| R = Readable    | bit                                                                                                                                                        | W = Writable bi                      | it                                | U = Unimplem                        | ented bit. read as | s '0'          |        |
| -n = Value at I | POR                                                                                                                                                        | '1' = Bit is set                     |                                   | '0' = Bit is clea                   | red                | x = Bit is unk | nown   |
|                 |                                                                                                                                                            |                                      |                                   |                                     |                    |                | ]      |
| bit 15-14       | Unimpleme                                                                                                                                                  | nted: Read as 'o                     | )'                                |                                     |                    |                |        |
| bit 13          | SHRSRCEN                                                                                                                                                   | 1: Share Source                      | Enable for Ou                     | ıtput #1 bit                        |                    |                |        |
|                 | 1 = Sourcing<br>0 = Sourcing                                                                                                                               | Current Mirror r<br>Current Mirror r | node is enable<br>node is disable | ed (uses referen<br>ed              | ce from another    | source)        |        |
| bit 12          | SHRSNKEN                                                                                                                                                   | 1: Share Sink E                      | nable for Outpu                   | ut #1 bit                           |                    |                |        |
|                 | 1 = Sinking (<br>0 = Sinking (                                                                                                                             | Current Mirror me                    | ode is enabled<br>ode is disabled | (uses reference                     | e from another so  | ource)         |        |
| bit 11          | GENSRCEN                                                                                                                                                   | 1: Generated So                      | ource Enable fo                   | or Output #1 bit                    |                    |                |        |
|                 | 1 = Source g<br>0 = Source g                                                                                                                               | generates the cu<br>loes not generat | rrent source m<br>e the current s | irror reference<br>ource mirror ref | erence             |                |        |
| bit 10          | GENSNKEN                                                                                                                                                   | I1: Generated Si                     | nk Enable for (                   | Output #1 bit                       |                    |                |        |
|                 | 1 = Source generates the current source mirror reference<br>0 = Source does not generate the current source mirror reference                               |                                      |                                   |                                     |                    |                |        |
| bit 9           | SRCEN1: Source Enable for Output #1 bit                                                                                                                    |                                      |                                   |                                     |                    |                |        |
|                 | 1 = Current source is enabled<br>0 = Current source is disabled                                                                                            |                                      |                                   |                                     |                    |                |        |
| bit 8           | SNKEN1: Sink Enable for Output #1 bit                                                                                                                      |                                      |                                   |                                     |                    |                |        |
|                 | <ul><li>1 = Current sink is enabled</li><li>0 = Current sink is disabled</li></ul>                                                                         |                                      |                                   |                                     |                    |                |        |
| bit 7-6         | Unimplemented: Read as '0'                                                                                                                                 |                                      |                                   |                                     |                    |                |        |
| bit 5           | SHRSRCEN0: Share Source Enable for Output #0 bit                                                                                                           |                                      |                                   |                                     |                    |                |        |
|                 | <ul> <li>1 = Sourcing Current Mirror mode is enabled (uses reference from another source)</li> <li>0 = Sourcing Current Mirror mode is disabled</li> </ul> |                                      |                                   |                                     |                    |                |        |
| bit 4           | SHRSNKEN0: Share Sink Enable for Output #0 bit                                                                                                             |                                      |                                   |                                     |                    |                |        |
|                 | <ul> <li>1 = Sinking Current Mirror mode is enabled (uses reference from another source)</li> <li>0 = Sinking Current Mirror mode is disabled</li> </ul>   |                                      |                                   |                                     |                    |                |        |
| bit 3           | GENSRCEN                                                                                                                                                   | IO: Generated So                     | ource Enable fo                   | or Output #0 bit                    |                    |                |        |
|                 | <ul> <li>1 = Source generates the current source mirror reference</li> <li>0 = Source does not generate the current source mirror reference</li> </ul>     |                                      |                                   |                                     |                    |                |        |
| bit 2           | GENSNKEN                                                                                                                                                   | IO: Generated Si                     | nk Enable for (                   | Output #0 bit                       |                    |                |        |
|                 | <ul> <li>1 = Source generates the current source mirror reference</li> <li>0 = Source does not generate the current source mirror reference</li> </ul>     |                                      |                                   |                                     |                    |                |        |
| bit 1           | SRCEN0: So                                                                                                                                                 | ource Enable for                     | Output #0 bit                     |                                     |                    |                |        |
|                 | 1 = Current source is enabled<br>0 = Current source is disabled                                                                                            |                                      |                                   |                                     |                    |                |        |
| bit 0           | SNKEN0: Sink Enable for Output #0 bit                                                                                                                      |                                      |                                   |                                     |                    |                |        |
|                 | 1 = Current s<br>0 = Current s                                                                                                                             | sink is enabled<br>sink is disabled  |                                   |                                     |                    |                |        |

# REGISTER 28-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

| R/W-0                                                              | R/W-0 | R/W-0           | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------------------------------------------------------------------|-------|-----------------|-------|-------|-------|-------|-------|
| PSCNT<15:8>                                                        |       |                 |       |       |       |       |       |
| bit 15 bit                                                         |       |                 |       |       |       |       | bit 8 |
|                                                                    |       |                 |       |       |       |       |       |
| R/W-0                                                              | R/W-0 | R/W-0           | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| PSCNT<7:0>                                                         |       |                 |       |       |       |       |       |
| bit 7                                                              |       |                 |       | bit 0 |       |       |       |
|                                                                    |       |                 |       |       |       |       |       |
| Legend:                                                            |       |                 |       |       |       |       |       |
| R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' |       | <b>d as</b> '0' |       |       |       |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit    |       | x = Bit is unki | nown  |       |       |       |       |

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

## REGISTER 28-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

| R/W-0                                                   | R/W-0        | R/W-0 | R/W-0                              | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |
|---------------------------------------------------------|--------------|-------|------------------------------------|-------|-------|-------|-------|--|
| PSCNT<31:24>                                            |              |       |                                    |       |       |       |       |  |
| bit 15                                                  |              |       |                                    |       |       |       | bit 8 |  |
|                                                         |              |       |                                    |       |       |       |       |  |
| R/W-0                                                   | R/W-0        | R/W-0 | R/W-0                              | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |
|                                                         | PSCNT<23:16> |       |                                    |       |       |       |       |  |
| bit 7                                                   |              |       |                                    | bit 0 |       |       |       |  |
|                                                         |              |       |                                    |       |       |       |       |  |
| Legend:                                                 |              |       |                                    |       |       |       |       |  |
| R = Readable bit W = Writable bit                       |              | bit   | U = Unimplemented bit, read as '0' |       |       |       |       |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared |              | ared  | x = Bit is unki                    | nown  |       |       |       |  |
| L                                                       |              |       |                                    |       |       |       |       |  |

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

| Device                                              | DEVID     |  |  |  |  |
|-----------------------------------------------------|-----------|--|--|--|--|
| Device IDs for dsPIC33CK256MP508 Family with CAN FD |           |  |  |  |  |
| dsPIC33CK256MP508                                   | 0x7C74    |  |  |  |  |
| dsPIC33CK256MP506                                   | 0x7C73    |  |  |  |  |
| dsPIC33CK256MP505                                   | 0x7C72    |  |  |  |  |
| dsPIC33CK256MP503                                   | 0x7C71    |  |  |  |  |
| dsPIC33CK256MP502                                   | 0x7C70    |  |  |  |  |
| dsPIC33CK128MP508                                   | 0x7C64    |  |  |  |  |
| dsPIC33CK128MP506                                   | 0x7C63    |  |  |  |  |
| dsPIC33CK128MP505                                   | 0x7C62    |  |  |  |  |
| dsPIC33CK128MP503                                   | 0x7C61    |  |  |  |  |
| dsPIC33CK128MP502                                   | 0x7C60    |  |  |  |  |
| dsPIC33CK64MP508                                    | 0x7C54    |  |  |  |  |
| dsPIC33CK64MP506                                    | 0x7C53    |  |  |  |  |
| dsPIC33CK64MP505                                    | 0x7C52    |  |  |  |  |
| dsPIC33CK64MP503                                    | 0x7C51    |  |  |  |  |
| dsPIC33CK64MP502                                    | 0x7C50    |  |  |  |  |
| dsPIC33CK32MP506                                    | 0x7C43    |  |  |  |  |
| dsPIC33CK32MP505                                    | 0x7C42    |  |  |  |  |
| dsPIC33CK32MP503                                    | 0x7C41    |  |  |  |  |
| dsPIC33CK32MP502                                    | 0x7C40    |  |  |  |  |
| Device IDs for dsPIC33CK256MP508 Family without     | ut CAN FD |  |  |  |  |
| dsPIC33CK256MP208                                   | 0x7C34    |  |  |  |  |
| dsPIC33CK256MP206                                   | 0x7C33    |  |  |  |  |
| dsPIC33CK256MP205                                   | 0x7C32    |  |  |  |  |
| dsPIC33CK256MP203                                   | 0x7C31    |  |  |  |  |
| dsPIC33CK256MP202                                   | 0x7C30    |  |  |  |  |
| dsPIC33CK128MP208                                   | 0x7C24    |  |  |  |  |
| dsPIC33CK128MP206                                   | 0x7C23    |  |  |  |  |
| dsPIC33CK128MP205                                   | 0x7C22    |  |  |  |  |
| dsPIC33CK128MP203                                   | 0x7C21    |  |  |  |  |
| dsPIC33CK128MP202                                   | 0x7C20    |  |  |  |  |
| dsPIC33CK64MP208                                    | 0x7C14    |  |  |  |  |
| dsPIC33CK64MP206                                    | 0x7C13    |  |  |  |  |
| dsPIC33CK64MP205                                    | 0x7C12    |  |  |  |  |
| dsPIC33CK64MP203                                    | 0x7C11    |  |  |  |  |
| dsPIC33CK64MP202                                    | 0x7C10    |  |  |  |  |
| dsPIC33CK32MP206                                    | 0x7C03    |  |  |  |  |
| dsPIC33CK32MP205                                    | 0x7C02    |  |  |  |  |
| dsPIC33CK32MP203                                    | 0x7C01    |  |  |  |  |
| dsPIC33CK32MP202                                    | 0x7C00    |  |  |  |  |

## TABLE 30-4: DEVICE IDs FOR THE dsPIC33CK256MP508 FAMILY



# FIGURE 33-11: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 0) TIMING CHARACTERISTICS