

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck32mp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.2.3 Move and Accumulator Instructions

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.2.4 MAC Instructions

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- · Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.2.5 Other Instructions

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM7R7 | ICM7R6 | ICM7R5 | ICM7R4 | ICM7R3 | ICM7R2 | ICM7R1 | ICM7R0 |
| bit 15 | -
- | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
TCKI7R7	TCKI7R6	TCKI7R5	TCKI7R4	TCKI7R3	TCKI7R2	TCKI7R1	TCKI7R0
bit 7						•	bit 0
Lonondi							

REGISTER 8-23: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM7R<7:0>: Assign SCCP Capture 7 (ICM7) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI7R<7:0>:** Assign SCCP Timer7 (TCKI7) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-24: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM8R7 | ICM8R6 | ICM8R5 | ICM8R4 | ICM8R3 | ICM8R2 | ICM8R1 | ICM8R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI8R7 | TCKI8R6 | TCKI8R5 | TCKI8R4 | TCKI8R3 | TCKI8R2 | TCKI8R1 | TCKI8R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM8R<7:0>: Assign SCCP Capture 8 (ICM8) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI8R<7:0>:** Assign SCCP Timer8 (TCKI8) Input to the Corresponding RPn Pin bits See Table 8-4.

Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

REGISTER 8-54: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 13-8	RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP32R<5:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-55: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0		
bit 15	÷				·		bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimplemented: Read as '0'								
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits								

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note 1: This data sheet summarizes the features of this group of dsPIC33 devices. It is not intended to be a comprehensive reference source. For more information, refer to "Direct Memory Access Controller (DMA)" (DS39742) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus, between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations, causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Four Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations
- A simplified block diagram of the DMA Controller is shown if Figure 10-1.

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	U-0	U-0			
IVMIF ⁽¹⁾	WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF		_			
bit 15	I		1				bit 8			
U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0			
_	—	_	TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF			
bit 7							bit			
Legend:		C = Clearable	bit	HS = Hardwa	are Settable bit					
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15		d Message Inter								
		essage interrup								
L:1 4 4		d message inter	-							
bit 14		Wake-up Activit		g bit ⁽¹⁾						
	 Wake-up activity interrupt occurred No wake-up activity interrupt occurred 									
bit 13		N Bus Error Inte	•	1)						
	1 = CAN bus error interrupt occurred									
	0 = No CAN	bus error interru	pt occurred							
bit 12	SERRIF: System Error Interrupt Flag bit ⁽¹⁾									
	 System error interrupt occurred No system error interrupt occurred 									
1.11.44	-	-								
bit 11		XOVIF: Receive Buffer Overflow Interrupt Flag bit = Receive buffer overflow interrupt occurred								
		e buffer overflov								
bit 10			•							
		TXATIF: Transmit Attempt Interrupt Flag bit 1 = Transmit attempt interrupt occurred								
	0 = No transmit attempt Interrupt occurred									
bit 9-5	Unimplemen	ited: Read as '0	,							
bit 4	TEFIF: Trans	mit Event FIFO	Interrupt Flag	bit						
		event FIFO inte	•							
		nit event FIFO i	-							
bit 3	MODIF: CAN Mode Change Interrupt Flag bit ⁽¹⁾									
	 1 = CAN module mode change occurred (OPMOD<2:0> have changed to reflect REQOP<2:0>) 0 = No mode change occurred 									
bit 2	TBCIF: CAN Timer Overflow Interrupt Flag bit ⁽¹⁾									
	1 = TBC has overflowed									
	0 = TBC has	not overflowed								
bit 1	RXIF: Receiv	e Object Interru	pt Flag bit							
		object interrupt i								
		e object interru	-	g						
bit 0		nit Object Interru								
		object interrupt		na						
		nit object interru		ng						

REGISTER 11-16: C1INTL: CAN INTERRUPT REGISTER LOW

Note 1: C1INTL: Flags are set by hardware and cleared by application.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	—	_	FIFOCI4 ⁽¹⁾	FIFOCI3 ⁽¹⁾	FIFOCI2 ⁽¹⁾	FIFOCI1 ⁽¹⁾	FIFOCI0 ⁽¹⁾				
pit 15							bit				
			0///0.0	0///0.0							
R-0	R-0	R-0	C/HS-0	C/HS-0	R-0	R-0	R-0				
TXABT ⁽³⁾	TXLARB ⁽²⁾	TXERR ⁽²⁾	TXATIF	RXOVIF	TFERFFIF	TFHRFHIF	TFNRFNIF				
bit 7							bit				
Legend:		C = Clearable	bit	HS = Hardwa	are Settable bit						
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'					
n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as '0)'								
bit 12-8	FIFOCI<4:0>	: FIFO Messag	e Index bits ⁽¹⁾								
	FIFOCI<4:0>: FIFO Message Index bits ⁽¹⁾ TXEN = 1 (FIFO configured as a transmit buffer):										
	A read of this register will return an index to the message that the FIFO will next attempt to transmit.										
	TXEN = 0 (FIFO configured as a receive buffer):										
	A read of this register will return an index to the message that the FIFO will use to save the next message.										
bit 7	TXABT: Message Aborted Status bit ⁽³⁾										
	1 = Message was aborted										
	0 = Message completed successfully										
bit 6	TXLARB: Message Lost Arbitration Status bit ⁽²⁾										
	•	lost arbitration	•								
bit 5	 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽²⁾ 										
	1 = A bus error occurred while the message was being sent										
	0 = A bus error did not occur while the message was being sent										
bit 4	TXATIF: Transmit Attempts Exhausted Interrupt Pending bit										
	TXEN = 1 (FIFO configured as a transmit buffer):										
	1 = Interrupt is pending										
	0 = Interrupt is not pending										
	TXEN = 0 (FIFO configured as a receive buffer): Unused, read as '0'.										
bit 3	RXOVIF: Receive FIFO Overflow Interrupt Flag bit										
	TXEN = 1 (FIFO configured as a transmit buffer):										
	Unused, read as '0'. TXEN = 0 (FIFO configured as a receive buffer):										
		event has occu		<u></u>							
		ow event has o									
Note 1: FIF	-OCI<4:0> give:	s a zero-indexe	d value to the	message in th	e FIFO. If the F	IFO is 4 messa	ages deep				
	SIZE<4:0> = 3),										
2 ∙ Th	aca hite ara unc	lated when a m	assaga compl	otos (or aborts) or when the F	IEO is resot					

- 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

R/W-	0 R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
EVTyC	EN EVTyPO	L EVTySTRD	EVTySYNC	—	_		_
bit 15			•				bit 8
			5444.6			D 444 A	
R/W-		R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
EVTyS	EL3 EVTySEL	2 EVTySEL1	EVTySEL0		EVTyPGS2 ⁽²⁾	EVTyPGS1(2)	2
bit 7							bit C
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkn	own
bit 15		DWM Event Out	nut Enchla hit				
JIL IS	-	: PWM Event Out output signal is o	-				
		output signal is in	•	сурп			
bit 14	EVTyPOL	: PWM Event Out	put Polarity bit				
		output signal is a					
		output signal is a	•				
bit 13		D: PWM Event O					
		output signal pul			(1)		
L:4 4 0		output signal is s		VVIVI CIOCK Cy	cies minimum		
bit 12	-	C: PWM Event O		the eveter	alaak		
		output signal is s output is not syne					
		out signal pulse w				d EVTySTRD =	1.
bit 11-8	Unimplem	nented: Read as	0'				
bit 7-4	EVTySEL	<3:0>: PWM Ever	nt Selection bit	S			
		gh-resolution erro	r event signal				
		0 = Reserved	_ 1				
		DC Trigger 2 signa					
		FER signal (avai		Pull Output m	nodes only) ⁽⁴⁾		
	0110 = C A	AHALF signal (av	ailable in Cente				
		CI Fault active out					
		CI Current-limit ac CI Feed-forward a					
		CI Sync active out		griai			
	0001 = PV	NM Generator ou	tput signal ⁽³⁾				
	0000 = Sc	ource is selected I	by the PGTRG	SEL<2:0> bi	ts		
bit 3	Unimplem	nented: Read as '	0'				
Note 1:	The event signa from different cl	al is stretched usin lock sources.	ng peripheral_o	clk because o	different PWM G	enerators may	be operating
2:		e produced if the s			-		
3:	This is the PWN	A Generator output	ut signal prior t	o output mod	le logic and any	output override	logic.
	The second second second					• • • •	

REGISTER 12-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾

- 4: This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
- 5: 'y' denotes a common instance (A-F).

REGISTER 12-25: PGxDCA: PWM GENERATOR x DUTY CYCLE ADJUSTMENT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	_	—	_		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxD)CA<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bi	t	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **PGxDCA<7:0>:** PWM Generator x Duty Cycle Adjustment Value bits Depending on the state of the selected PCI source, the PGxDCA value will be added to the value in the PGxDC register to create the effective duty cycle. When the PCI source is active, PGxDCA is added.

REGISTER 12-26: PGxPER: PWM GENERATOR x PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPE	ER<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1.1.1.1	FV/VV-U	F\/VV-0	-	ER<7:0> ⁽¹⁾	N/ VV-U	N/W-0	N/W-0
			I GAI				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own

bit 15-0 **PGxPER<15:0>:** PWM Generator x Period Register bits⁽¹⁾

Note 1: Period values less than '0x0010' should not be used ('0x0080' in High-Resolution mode).

13.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

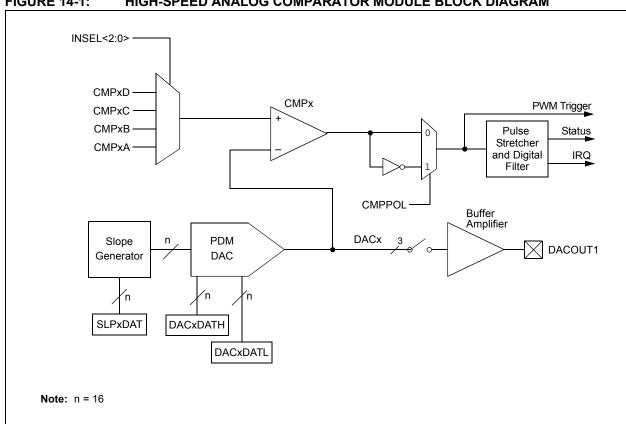
The dsPIC33CK256MP508 devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters. The devices implement the ADC with three SAR cores, two dedicated and one shared.

13.1 ADC Features Overview

The High-Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Three ADC Cores: Two Dedicated Cores and One Shared (common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.5 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 24 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels

- Simultaneous Sampling of up to 3 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM triggers from CPU cores
 - MCCP/SCCP modules triggers
 - CLC modules triggers
 - External pin trigger event (ADTRG31)
 - Software trigger
- Four Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Four Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input


The module consists of three independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 13-1 and Figure 13-2.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the Measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

dsPIC33CK256MP508 FAMILY

FIGURE 14-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 15-11: INTxTMRL: INTERVAL x TIMER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTN	/IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	MR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

REGISTER 15-12: INTxTMRH: INTERVAL x TIMER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

REGISTER 19-12: PMRADDR: PARALLEL MASTER PORT READ ADDRESS REGISTER⁽²⁾

-	-	54446		5444.0	-		-		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
RCS2 ⁽¹⁾	RCS1 ⁽¹⁾	4		RADD	R<13:8>				
RADDR15 ⁽¹⁾	RADDR14 ⁽¹⁾			10.66	10.0				
bit 15							bit 8		
	D 444 A	D 444 0	DAM A	D 444 0	D 444 0	5444.0	D 444 0		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RADD)R<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	RCS2: Chip S	Select 2 bit ⁽¹⁾							
	1 = Chip Sel	ect 2 is active							
	0 = Chip Sel	ect 2 is inactive	e (RADDR15	function is sele	cted)				
bit 15	RADDR15: T	arget Read Add	dress bit 15 ⁽¹⁾						
bit 14	RCS1: Chip S	Select 1 bit ⁽¹⁾							
	1 = Chip Sel	ect 1 is active							
	0 = Chip Sel	ect 1 is inactive	e (RADDR14 1	function is sele	cted)				
bit 14	RADDR14: T	arget Read Add	dress bit 14 ⁽¹⁾)					
bit 13-0	RADDR<13:0	0>: Target Read	d Address bits	6					
Note 1: Th	RADDR<13:0 e use of these p MCON<7:6>).	0>: Target Read bins as PMA15/			elected by the	CSF<1:0> bits			

2: This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1'.

22.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (SCCP/MCCP)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to "Capture/Compare/ PWM/Timer (MCCP and SCCP)" (DS33035) in the "dsPIC33/PIC24 Family Reference Manual".

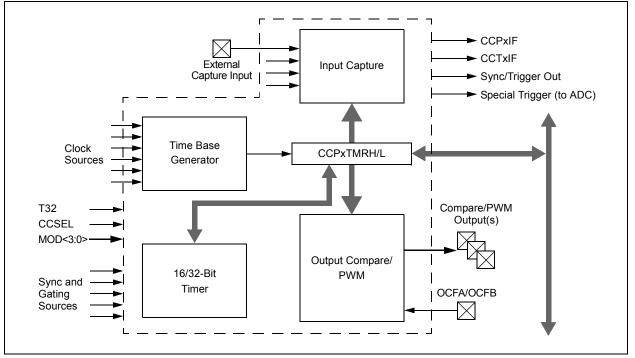
dsPIC33CK256MP508 family devices include 8 SCCP and 1 MCCP Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals from earlier PIC24F devices. The module can operate in one of three major modes:

- General Purpose Timer
- · Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCP) output modules provide only one PWM output.

Multiple Capture/Compare/PWM (MCCP) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical. The SCCPx and MCCPx modules can be operated in only one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

A conceptual block diagram for the module is shown in Figure 22-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of six control and status registers:

- CCPxCON1L (Register 22-1)
- CCPxCON1H (Register 22-2)
- CCPxCON2L (Register 22-3)
- CCPxCON2H (Register 22-4)
- CCPxCON3H (Register 22-6)
- CCPxSTATL (Register 22-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (CCPx Timer High/Low Counters)
- CCPxPRH/CCPxPRL (CCPx Timer Period High/Low)
- CCPxRA (CCPx Primary Output Compare Data Buffer)
- CCPxRB (CCPx Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (CCPx Input Capture High/Low Buffers)

FIGURE 22-1: SCCPx CONCEPTUAL BLOCK DIAGRAM

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single input transparent latch with S and R
 - 110 = JK flip-flop with R
 - 101 = Two-input D flip-flop with R
 - 100 = Single input D flip-flop with S and R
 - 011 = SR latch
 - 010 = Four-input AND
 - 001 = Four-input OR-XOR
 - 000 = Four-input AND-OR

REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	 1 = Channel 4 logic output is inverted when applied to the logic cell 0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	 1 = Channel 3 logic output is inverted when applied to the logic cell 0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	 1 = Channel 2 logic output is inverted when applied to the logic cell 0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	 1 = Channel 1 logic output is inverted when applied to the logic cell 0 = Channel 1 logic output is not inverted

25.1 Control Registers

REGISTER 25-1: CRCCONL: CRC CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15	·		•		•	•	bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	R/W-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	MOD	—	—
bit 7							bit (
Logondi			Clearable bit	HCC - Hordu	are Settable/C	laarahla hit	
Legend:	la hit	HC = Hardware					
R = Readab		W = Writable bi	IL	•	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15		RC Enable bit					
	1 = Enables						
	0 = Disable						
bit 14	Unimpleme	nted: Read as '	0'				
bit 13	CSIDL: CRO	C Stop in Idle Mo	ode bit				
	1 = Disconti	nues module op	eration when de	evice enters Idle	e mode		
	0 = Continu	es module opera		le			
bit 12-8	VWORD<4:	es module opera 0>: Pointer Valu	ition in Idle mod e bits				
bit 12-8	VWORD<4: Indicates the	es module opera	ition in Idle mod e bits		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 12-8 bit 7	VWORD<4: Indicates the 16 when PL	es module opera 0>: Pointer Valu e number of vali	ition in Idle mod e bits d words in the I		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
	VWORD<4: Indicates the 16 when PL	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bin full	ition in Idle mod e bits d words in the I		aximum value o	of 8 when PLE	N<4:0> ≥ 7 oi
	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bin full	ition in Idle mod e bits d words in the I t		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 7	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> ≤ 7. :RC FIFO Full bir full not full :RC FIFO Empty empty	ition in Idle mod e bits d words in the I t		aximum value (of 8 when PLE	N<4:0> ≥ 7 o
bit 7	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is	es module opera 0>: Pointer Valu e number of valu EN<4:0> ≤ 7. :RC FIFO Full bir full not full :RC FIFO Empty empty	ition in Idle mod e bits d words in the I t y bit		aximum value o	of 8 when PLE	N<4:0> ≥ 7 o
bit 7 bit 6	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrupt	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty	Ition in Idle mod e bits d words in the I t bit election bit ty; the final wor	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrupt	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. CRC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty t on shift is comp	Ition in Idle mod e bits d words in the I t bit election bit ty; the final wor	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty t on shift is comp RC Start bit RC serial shifter	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor olete and results	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se	es module opera 0>: Pointer Value e number of value EN<4:0> \leq 7. RC FIFO Full bir full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty CRC Start bit	ation in Idle mod e bits d words in the I t bit election bit oty; the final wor olete and results ed off	FIFO. Has a ma			N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo	es module opera 0>: Pointer Valu e number of valu EN<4:0> \leq 7. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rd is shifted into	ation in Idle mod e bits d words in the I t bit election bit election bit oty; the final wor lete and results ed off on Select bit the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4 bit 3	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo 0 = Data wo	es module opera 0>: Pointer Valu e number of valu $EN<4:0> \le 7$. RC FIFO Full bir full not full RC FIFO Empty empty not empty RC Interrupt Set t on FIFO is empty RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rid is shifted into rid is shifted into	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: F 1 = Data wo 0 = Data wo	es module opera 0>: Pointer Valu e number of valu $EN<4:0> \le 7$. RC FIFO Full bir full not full RC FIFO Empty empty not empty RC Interrupt Set t on FIFO is empty RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rid is shifted into Calculation Mod	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 o
bit 7 bit 6 bit 5 bit 4 bit 3	VWORD<4: Indicates the 16 when PLI CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CF 1 = Starts C 0 = CRC se LENDIAN: I 1 = Data wo 0 = Data wo MOD: CRC	es module opera 0>: Pointer Valu e number of valu $EN<4:0> \le 7$. RC FIFO Full bir full not full RC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter rial shifter is turn Data Shift Direction rid is shifted into Calculation Mod e mode	ation in Idle mod e bits d words in the I t d bit election bit oty; the final wor olete and results ed off on Select bit the FIFO, starti the FIFO, starti	FIFO. Has a ma rd of data is still are ready ng with the LSt	shifting throug		N<4:0> ≥ 7 c

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STEP	2<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-8	Unimplemer	ted: Read as '	0'					
bit 7-0	STEP2<7:0>	: DMT Clear Ti	mer bits					
00001000 = Clears STEP1<7:0>, S loading of the STEP1<7 verified by reading the l		e STEP1<7:0>	> bits in the cor	rrect sequence. T	he write to thes	e bits may be		
	All Other	-	C	Ū		•	C	
	Write Patterns	value being			1<7:0> will rema be captured. Th	•		

REGISTER 28-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA	GEU,Expr	Branch if unsigned Greater Than or Equal	1	1 (4)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
10	BREAK	BREAK		Stop User Code Execution	1	1	None
11	BSET	BSET	f,#bit4	Bit Set f	1	1	None
			Ws,#bit4	Bit Set Ws	1	1	None
12	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
13	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	-	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
14	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
15	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
16	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
17	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
18	CALL	CALL	lit23	Call Subroutine	2	4	SFA
		CALL	Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L	Wn	Call Indirect Subroutine (long address)	1	4	SFA
19	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AW	B Clear Accumulator	1	1	OA,OB,SA,SE

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

TABLE 33-38: DACx MODULE SPECIFICATIONS

		ions: 3.0V to 3.6V (unless othet ture $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ir $-40^{\circ}C \le TA \le +125^{\circ}C$ for	dustrial				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Comments
DA02	CVRES	Resolution		12		bits	
DA03	INL	Integral Nonlinearity Error	-38	_	0	LSB	
DA04	DNL	Differential Nonlinearity Error	-5	—	5	LSB	
DA05	EOFF	Offset Error	-3.5	—	21.5	LSB	Internal node at comparator input
DA06	EG	Gain Error	0	—	41	LSB	Internal node at comparator input
DA07	TSET	Settling Time	_	750	—	ns	Output within 1% of desired output voltage with a 5%-95% or 95%-5% step
DA08	Vout	Voltage Output Range	0.165	—	3.135	V	VDD = 3.3V

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 33-39: DACx OUTPUT (DACOUT1 PIN) SPECIFICATIONS

	ing Condi	tions: 3.0V to 3.6V (unless oth ature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ir $-40^{\circ}C \le TA \le +125^{\circ}C$ for	ndustrial	ted) ⁽¹⁾			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
DA11	RLOAD	Resistive Output Load Impedance	10K		_	Ohm	
DA11a	CLOAD	Output Load Capacitance	—	—	30	pF	Including output pin capacitance
DA12	Ιουτ	Output Current Drive Strength	—	3	_	mA	Sink and source
DA13	INL	Integral Nonlinearity Error	-50	—	0	LSB	Includes INL of DACx module (DA03)
DA14	DNL	Differential Nonlinearity Error	-5	—	5	LSB	Includes DNL of DACx module (DA04)
DA30	EOFF	Offset Error	-150	—	0	LSB	Includes offset error of DACx module (DA05)
DA31	EG	Gain Error	-146	_	0	LSB	Includes gain error of DACx module (DA06)

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

CPU2	29
Addressing Modes2	29
Control Registers	64
Data Space Addressing2	29
Instruction Set2	29
Registers 2	29
Resources	3
CRC	
Control Registers47	'4
Current Bias Generator	
Control Registers47	'8
Current Bias Generator (CBG)47	7
Current Bias Generator. See CBG.	
Customer Change Notification Service61	5
Customer Notification Service	5
Customer Support61	5
Cyclic Redundancy Check. See CRC.	

D

Data Address Space	43
Memory Map for dsPIC33CK128MPX0X Devices	46
Memory Map for dsPIC33CK256MP508 Devices	45
Memory Map for dsPIC33CK64MPX0X and	
dsPIC33CK32MPX0X Devices	47
Near Data Space	44
Organization, Alignment	
SFR Space	44
Width	43
Data Space	
Extended X	68
Paged Data Memory Space (figure)	66
Paged Memory Scheme	
DC Characteristics	
Operating MIPS vs. Voltage	546
Deadman Timer (DMT)	485
Control Registers	486
Deadman Timer. See DMT.	
Demo/Development Boards, Evaluation and	
Starter Kits	544
Development Support	541
Device Calibration	522
and Identification	522
Device Overview	17
Device Programmer	
MPLAB PM3	543
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	211
Control Registers	207
Peripheral Module Disable (PMD)	207
Summary of Operations	205
Types of Data Transfers	
Typical Setup	207
Doze Mode	
DSP Engine	38
Dual Watchdog Timer (Dual WDT)	526
3 ()	

Е

ECC	
Control Registers	
Electrical Characteristics	545
AC	
ADC Delta Current	
ADC Specifications	
APLL Delta Current	552

APLL Timing Specifications	559
Comparator + DAC Delta Current	
Constant-Current Source Specifications	
DACx Output (DACOUT1 Pin) Specifications	579
DACx Specifications	
Doze Current (IDOZE)	
External Clock Requirements	
High-Speed Analog Comparator Specifications	
High-Speed PWMx Timing Requirements	
I/O Pin Input Injection Current Specifications	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
I/O Timing Requirements	
I2Cx Bus Data Timing Requirements	501
÷ .	570
(Master Mode)	5/3
I2Cx Bus Data Timing Requirements	
(Slave Mode)	
Idle Current (IDLE)	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Op Amp Delta Current	
Operating Current (IDD)	
Operating Voltage Specifications	
Operational Amplifier Specifications	
PLL Timing Specifications	
Power-Down Current (IPD)	
Program Memory	
PWM Delta Current	
Reset, WDT, OST, PWRT Timing Requirements	562
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Timing Requirements	567
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Timing Requirements	566
SPIx Master Mode (Half-Duplex, Transmit Only)	
Timing Requirements	565
SPIx Maximum Data/Clock Rate Summary	564
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 0) Timing Requirements	569
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0) Timing Requirements	571
UARTx I/O Timing Requirements	
Watchdog Timer Delta Current (∆IwDT)	
Equations	
AFPLLO Calculation	184
AFvco Calculation	
FPLLO Calculation	
Frame Time Calculations	
Fvco Calculation	
I ² C Baud Rate Reload Calculation	
Relationship Between Device and	000
SPIx Clock Speed	300
SYNCMINX and SYNCMAXX Calculations	
Tick Period Calculation	
Errata	
Error Correcting Code (ECC)	
Fault Injection	
	19
F	
Flash Program Memory	

F

77
83
81
505