

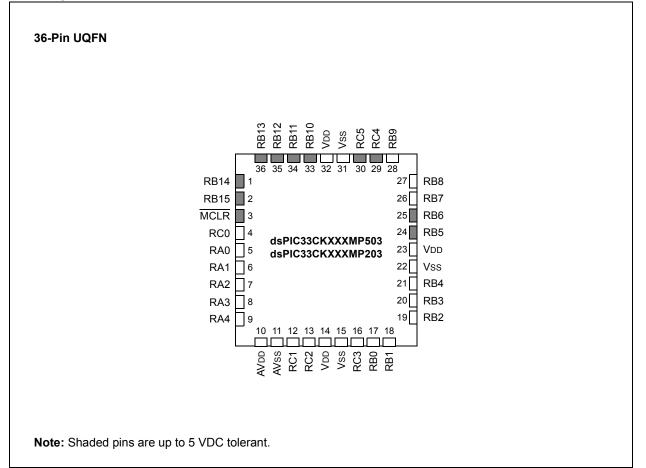
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck64mp205t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 5: 36-PIN UQFN

Pin #	Function	Pin #	Function
1	RP46 /PWM1H/RB14	19	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47 /PWM1L/RB15	20	PGD2/OA2IN-/AN8/ RP35 /RB3
3	MCLR	21	PGC2/OA2IN+/ RP36 /RB4
4	AN12/ANN0/ RP48 /RC0	22	Vss
5	OA1OUT/AN0/CMP1A/IBIAS0/RA0	23	VDD
6	OA1IN-/ANA1/RA1	24	PGD3/ RP37 /PWM6L/SDA2/RB5
7	OA1IN+/AN9/RA2	25	PGC3/RP38/PWM6H/SCL2/RB6
8	DACOUT1/AN3/CMP1C/RA3	26	TDO/AN2/CMP3A/ RP39 /SDA3/RB7
9	OA3OUT/AN4/CMP3B/IBIAS3/RA4	27	PGD1/AN10/ RP40 /SCL1/RB8
10	AVdd	28	PGC1/AN11/ RP41 /SDA1/RB9
11	AVss	29	RP52/PWM5H/ASDA2/RC4
12	OA3IN-/AN13/CMP1B/ISRC0/RP49/RC1	30	RP53/PWM5L/ASCL2/RC5
13	OA3IN+/AN14/CMP2B/ISRC1/RP50/RC2	31	Vss
14	VDD	32	VDD
15	Vss	33	TMS/ RP42 /PWM3H/RB10
16	AN15/CMP2A/IBIAS2/RP51/RC3	34	TCK/ RP43 /PWM3L/RB11
17	OSCI/CLKI/AN5/RP32/RB0	35	TDI/ RP44 /PWM2H/RB12
18	OSCO/CLKO/AN6/RP33/RB1	36	RP45/PWM2L/RB13

Note: RPn represents remappable peripheral functions.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15		•					bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
		a a:					

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	00	<u> </u>	50		50		50	
		—			—	—		
bit 15							bit	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	_	—	_	—	—	ECCDBE	SGHT	
bit 7							bit	
Legend:								
R = Readable b	it	W = Writable	bit	U = Unimpler	mented bit, read	ented bit, read as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-2 Unimplemented: Read as '0'

1 = ECC double-bit error trap has occurred

0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

8.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Enable for PORTx register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs, other than VDD, by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

8.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx registers have a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

8.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

8.3 PORT Control Registers

The following registers are in the PORT module:

- Register 8-1: ANSELx (one per port)
- Register 8-2: TRISx (one per port)
- Register 8-3: PORTx (one per port)
- Register 8-4: LATx (one per port)
- Register 8-5: ODCx (one per port)
- Register 8-6: CNPUx (one per port)
- Register 8-7: CNPDx (one per port)
- Register 8-8: CNCONx (one per port optional)
- Register 8-9: CNEN0x (one per port)
- Register 8-10: CNSTATx (one per port optional)
- Register 8-11: CNEN1x (one per port)
- Register 8-12: CNFx (one per port)

REGISTER 8-1: ANSELX: ANALOG SELECT FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			ANSEI	_x<15:8>				
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			ANSE	Lx<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0

ANSELx<15:0>: Analog Select for PORTx bits

1 = Analog input is enabled and digital input is disabled on the PORTx[n] pin

0 = Analog input is disabled and digital input is enabled on the PORTx[n] pin

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM1R7 | ICM1R6 | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 8-17: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0			
bit 7 bit 0										

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8 ICM1R<7:0>: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI1<7:0>:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-18: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM2R<7:0>: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI2R<7:0>:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-29: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM1R<7:0>:** Assign QEI Home 1 Input (QEIHOM1) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-30: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB2R7 | QEIB2R6 | QEIB2R5 | QEIB2R4 | QEIB2R3 | QEIB2R2 | QEIB2R1 | QEIB2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA2R7 | QEIA2R6 | QEIA2R5 | QEIA2R4 | QEIA2R3 | QEIA2R2 | QEIA2R1 | QEIA2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 QEIB2R<7:0>: Assign QEI2 Input B (QEIB2) to the Corresponding RPn Pin bits See Table 8-4.

 bit 7-0
 QEIA2R<7:0>: Assign QEI2 Input A (QEIA2) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEINDX1R<7:0>:** Assign QEI Index 1 Input (QEINDX1) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 11-34: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7) (CONTINUED)

bit 2	TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Empty Interrupt Flag
	1 = FIFO is empty
	0 = FIFO is not empty, at least 1 message is queued to be transmitted
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Full Interrupt Flag
	1 = FIFO is full
	0 = FIFO is not full
bit 1	TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Half Empty Interrupt Flag
	1 = FIFO is ≤ half full
	0 = FIFO is > half full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Half Full Interrupt Flag 1 = FIFO is > half full
	0 = FIFO is < half full
bit 0	
	TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit
	<u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Not Full Interrupt Flag
	1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Not Empty Interrupt Flag
	1 = FIFO is not empty, has at least 1 message
	0 = FIFO is empty
Noto 1:	EIEOCICION gives a zero indexed value to the message in the EIEO. If the EIEO is 4 messages

- Note 1: FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE<4:0> = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.
 - 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

REGISTER 12-2: FSCL: FREQUENCY SCALE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			FSCI	_<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			FSC	L<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown		

bit 15-0 **FSCL<15:0>:** Frequency Scale Register bits The value in this register is added to the frequency scaling accumulator at each pwm_master_clk. When the accumulated value exceeds the value of FSMINPER, a clock pulse is produced.

REGISTER 12-3: FSMINPER: FREQUENCY SCALING MINIMUM PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINP	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINF	PER<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unkn	own	

bit 15-0 **FSMINPER<15:0>:** Frequency Scaling Minimum Period Register bits This register holds the minimum clock period (maximum clock frequency) that can be produced by the frequency scaling circuit.

REGISTER 13-27: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 25; n = 0 TO 6)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

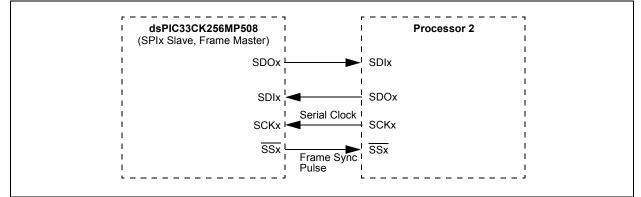
Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'


bit 12-8	TRGSRC(x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits (TRGSRC1 to TRGSRC25 – Odd)
	11111 = ADTRG31 (PPS input)
	11110 = PTG
	11101 = CLC2
	11100 = CLC1
	11011 = MCCP9
	11010 = SCCP7
	11001 = SCCP6
	11000 = SCCP5
	10111 = SCCP4
	10110 = SCCP3
	10101 = SCCP2
	10100 = SCCP1
	10011 = PWM8 Trigger 2
	10010 = PWM8 Trigger 1
	10001 = PWM7 Trigger 2
	10000 = PWM7 Trigger 1
	01111 = PWM6 Trigger 2
	01110 = PWM6 Trigger 1
	01101 = PWM5 Trigger 2
	01100 = PWM5 Trigger 1
	01011 = PWM4 Trigger 2
	01010 = PWM4 Trigger 1
	01001 = PWM3 Trigger 2
	01000 = PWM3 Trigger 1
	00111 = PWM2 Trigger 2
	00110 = PWM2 Trigger 1
	00101 = PWM1 Trigger 2
	00100 = PWM1 Trigger 1
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger 00000 = No trigger is enabled
hit 7_5	Unimplemented: Read as '0'

bit 7-5 Unimplemented: Read as '0'


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	OERIE	TXCIE
bit 15							bit 8
R-1	R-0	R/W-0, HS	R/W-0, HC	R-0	R/W-0, HC	R/W-0, HC	R/W-0, HC
TRMT	PERR	ABDOVF	CERIF	FERR	RXBKIF	OERR	TXCIF
bit 7	FLNN	ABDOVE	GERIF	FERN	RADRIF	UERK	bit C
Legend:		HS = Hardwar	e Settable bit		re Clearable bi		
R = Readabl		W = Writable	bit	-	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	TXMTIE: Tran	ısmit Shifter Err	npty Interrupt E	nable bit			
	1 = Interrupt is						
	0 = Interrupt is	s disabled					
bit 14	PERIE: Parity	Error Interrupt	Enable bit				
	1 = Interrupt is						
1.1.40	0 = Interrupt is						
bit 13	1 = Interrupt is	to-Baud Rate A s enabled	cquisition inter	rrupt Enable bil	[
	0 = Interrupt is						
bit 12	CERIE: Check	ksum Error Inte	rrupt Enable b	it			
	1 = Interrupt is 0 = Interrupt is						
bit 11	FERIE: Frami	ng Error Interru	pt Enable bit				
	1 = Interrupt is 0 = Interrupt is						
bit 10	RXBKIE: Rec	eive Break Inte	rrupt Enable b	it			
	1 = Interrupt is 0 = Interrupt is						
bit 9	OERIE: Recei	ive Buffer Over	flow Interrupt E	Enable bit			
	1 = Interrupt is 0 = Interrupt is		·				
bit 8	•	mit Collision Int	errupt Enable	bit			
	1 = Interrupt is 0 = Interrupt is	s enabled	·				
bit 7	-	nit Shifter Empt	y Interrupt Flag	g bit (read-only)		
	1 = Transmit bit when \$	Shift Register ([*] STPMD = 0)	rsR) is empty		p bit when STP	MD = 1 or mide	lle of first Stop
L:1 0		Shift Register is					
bit 6	LIN and Parity	Error/Address	Received/Forw	ard Frame Inte	errupt Flag bit		
	1 = Parity erro 0 = No parity e	or detected					
	Address Mode						
	1 = Address re						
	0 = No addres						
	All Other Mod Not used.	<u>es:</u>					

REGISTER 16-3: UXSTA: UARTX STATUS REGISTER

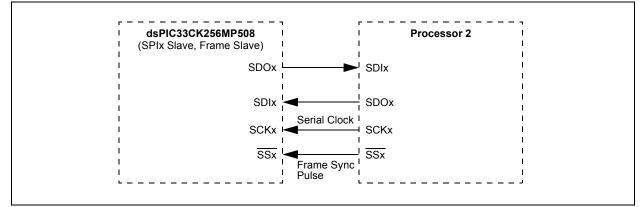

dsPIC33CK256MP508 FAMILY

FIGURE 17-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 17-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$

Where:

FPB is the Peripheral Bus Clock Frequency.

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I ² C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C Slave)
	 1 = Read: Indicates the data transfer is output from the Slave 0 = Write: Indicates the data transfer is input to the Slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full (8-bits of data)
	0 = Transmit is complete, I2CxTRN is empty

REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MSK<9:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MSK<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

REGISTER 19-11: PMWADDR: PARALLEL MASTER PORT WRITE ADDRESS REGISTER⁽²⁾

R/W-0 WCS1 ⁽¹⁾ VADDR14 ⁽¹⁾ R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 WADE	R/W-0 WADD R/W-0 DR<7:0>	R/W-0 R<13:8> 	R/W-0	R/W-0 bit 8	
VADDR14 ⁽¹⁾	R/W-0		R/W-0		R/W-0		
	R/W-0		R/W-0		R/W-0		
R/W-0	R/W-0			R/W-0	R/W-0		
R/W-0	R/W-0			R/W-0	R/W-0	DAALO	
	10000			10000	10.00	R/W-0	
		With DE				10110	
						bit C	
,	N = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'		
۲ ۲	1' = Bit is set		'0' = Bit is cleared x =			x = Bit is unknown	
VCS2: Chip Se	elect 2 bit ⁽¹⁾						
•		WADDR151	function is seled	cted)			
VADDR15: Ta	rget Write Addr	ess bit 15 ⁽¹⁾					
VCS1: Chip S	elect 1 bit ⁽¹⁾						
= Chip Selec	t 1 is active						
		WADDR14 1	function is seled	cted)			
VADDR14: Ta	rget Write Addr	ess bit 14 ⁽¹⁾					
ADDR<13:0	-: Target Write	Address bits	6				
	CS2: Chip Select = Chip Select = Chip Select ADDR15: Tar /CS1: Chip Select = Chip Select = Chip Select /ADDR14: Tar /ADDR13:0>	 (CS2: Chip Select 2 bit⁽¹⁾ Chip Select 2 is active Chip Select 2 is inactive ((ADDR15: Target Write Addr (CS1: Chip Select 1 bit⁽¹⁾ Chip Select 1 is active Chip Select 1 is inactive ((ADDR14: Target Write Addr (ADDR<13:0>: Target Write 	 /CS2: Chip Select 2 bit⁽¹⁾ = Chip Select 2 is active = Chip Select 2 is inactive (WADDR15 f /ADDR15: Target Write Address bit 15⁽¹⁾ /CS1: Chip Select 1 bit⁽¹⁾ = Chip Select 1 is active = Chip Select 1 is inactive (WADDR14 f /ADDR14: Target Write Address bit 14⁽¹⁾ /ADDR<13:0>: Target Write Address bits 	R '1' = Bit is set '0' = Bit is clear VCS2: Chip Select 2 bit ⁽¹⁾ = = Chip Select 2 is active = = Chip Select 2 is inactive (WADDR15 function is select VADDR15: Target Write Address bit 15 ⁽¹⁾ VCS1: Chip Select 1 bit ⁽¹⁾ = Chip Select 1 is active = Chip Select 1 is inactive (WADDR14 function is select VADDR14: Target Write Address bit 14 ⁽¹⁾ VADDR<13:0>: Target Write Address bits	R '1' = Bit is set '0' = Bit is cleared /CS2: Chip Select 2 bit ⁽¹⁾ = = Chip Select 2 is active = = Chip Select 2 is inactive (WADDR15 function is selected) /ADDR15: Target Write Address bit 15 ⁽¹⁾ /CS1: Chip Select 1 bit ⁽¹⁾ = Chip Select 1 is active = Chip Select 1 is inactive (WADDR14 function is selected) /ADDR14: Target Write Address bit 14 ⁽¹⁾	R '1' = Bit is set '0' = Bit is cleared x = Bit is unkn VCS2: Chip Select 2 bit ⁽¹⁾ = Chip Select 2 is active = Chip Select 2 is inactive (WADDR15 function is selected) VADDR15: Target Write Address bit 15 ⁽¹⁾ VCS1: Chip Select 1 bit ⁽¹⁾ = = Chip Select 1 is active = = Chip Select 1 is inactive (WADDR14 function is selected) VADDR14: Target Write Address bit 14 ⁽¹⁾ VADDR14: Target Write Address bit 14 ⁽¹⁾ VADDR VADDR	

- **Note 1:** The use of these pins as PMA15/PMA14 or WCS2/WCS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1'.

REGISTER 22-7: CCPxSTATL: CCPx STATUS REGISTER

11.0										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—		—	_	—	—	—	—			
bit 15							bit 8			
			5/2.2	5/2.2	5/2.2	5/2.2	- /2 2			
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
CCPTRIG	TRSET TRCLR ASEVT SCEVT ICDIS ICOV ICI									
bit 7							bit 0			
Legend:		C = Clearable				(0)				
R = Readable		W1 = Write '1'	Only bit	•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
11145 0										
bit 15-8	-	ted: Read as '0								
bit 7		CPx Trigger Sta								
		 Timer has been triggered and is running Timer has not been triggered and is held in Reset 								
bit 6		x Trigger Set Re								
2.1.0			•	er when TRIGEN	I = 1 (location a	alwavs reads a	s '0').			
bit 5		Px Trigger Clear			Υ.	5	,			
			•	er trigger when T	RIGEN = 1 (lo	cation always i	reads as '0').			
bit 4	ASEVT: CCP	x Auto-Shutdow	n Event Statu	us/Control bit						
	1 = A shutdo	wn event is in p	rogress; CCF	x outputs are in	the shutdown	state				
		itputs operate no	•							
bit 3	•	le Edge Compa								
		edge compare e								
h it 0	•	edge compare e		occurred						
bit 2		Capture x Disab		es not generate	a captura ovor					
		• •	• • •	es not generate erate a capture e	•	п				
bit 1		Capture x Buffer		-						
	•	t Capture x FIF								
		t Capture x FIF								
bit 0	ICBNE: Input	Capture x Buffe	er Status bit							
		pture x buffer ha		ble						
	0 = Input Ca	pture x buffer is	empty							

26.1 Current Bias Generator Control Registers

REGISTER 26-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
ON	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	_	110EN3	110EN2	110EN1	110EN0			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	ON: Current I	Bias Module En	able bit							
	1 = Module is									
	0 = Module is	disabled								
bit 14-4	Unimplemen	ted: Read as ') '							
bit 3	Ι10ΕΝ3: 10 μ	I10EN3: 10 μA Enable for Output 3 bit								
	$1 = 10 \ \mu A$ output is enabled									
	•	tput is disabled								
bit 2	•	A Enable for O	utput 2 bit							
		tput is enabled								
L:1 4	•	tput is disabled								
bit 1	•	A Enable for O tput is enabled	αιραί τοι							
		tput is disabled								
bit 0	-	A Enable for O	utout 0 bit							
	1 = 10 μA output is enabled 0 = 10 μA output is disabled									

REGISTER 28-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUN	ER<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0				'0' = Bit is clea	ired	x = Bit is unk	nown

bit 15-0 COUNTER<15:0>: Read Current Contents of Lower DMT Counter bits

REGISTER 28-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			COUNT	ER<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpleme	ented bit, read	i as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

TABLE 33-16: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	-5 ^(1,4)	mA	All pins	
DI60b	Іісн	Input High Injection Current	0	+5(2,3,4)	mA	All pins, excepting all 5V tolerant pins and SOSCI	
DI60c	∑Ііст	Total Input Injection Current (sum of all I/O and control pins) ⁽⁵⁾	-20	+20	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

Note 1: VIL Source < (Vss - 0.3).

2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.

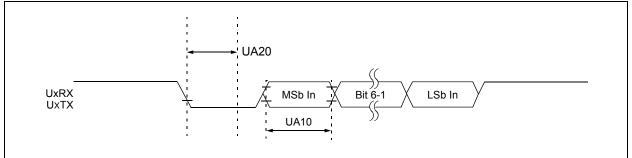

- **3:** 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **4:** Injection currents can affect the ADC results.
- 5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted in the sum.

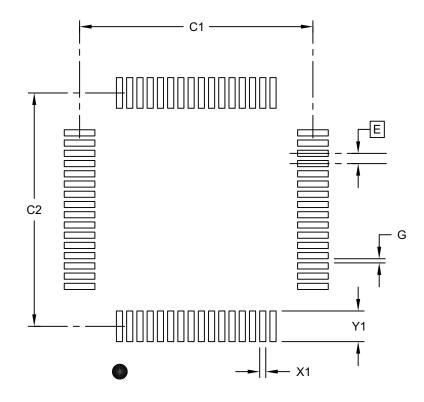
TABLE 33-17: I/O PIN OUTPUT SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins	_	_	0.42	V	VDD = 3.6V, IOL < 9 mA
		Output Low Voltage 8x Sink Driver Pins ⁽¹⁾	—	—	0.4	V	VDD = 3.6V, IOL < 11 mA
DO20	Vон	Output High Voltage 4x Source Driver Pins	2.4	_	—	V	Vdd = 3.6V, Ioн > -8 mA
		Output High Voltage 8x Source Driver Pins ⁽¹⁾	2.4	_	—	V	VDD = 3.6V, IOH > -12 mA

Note 1: 8x sink/source pins are RB1, RC8, RC9 and RD8.

FIGURE 33-17: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 33-35: UARTX MODULE I/O TIMING REQUIREMENTS


Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	40	—	_	ns		
UA11	FBAUD	UARTx Baud Frequency	_	_	25	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	50	_	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	Dimension Limits			MAX		
Contact Pitch	E		0.50 BSC			
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X28)	X1			0.30		
Contact Pad Length (X28)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1