

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck64mp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CK256MP508 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1 and Table 2. The following pages show their pinout diagrams.

TABLE 1: dsPIC33CK256MP508 FAMILY WITH CAN FD

				r			1				r		1		1		r						
Product Pins	Pins	Flash	Data RAM	ADC Module	ADC Channels	Timers	MCCP/SCCP	CAN FD	DMA Channels	SENT	UART	IdS	I ² C	GEI	CLC	ЬТG	CRC	PWM (High Speed)	Analog Comparators	12-Bit DAC	dmA qO	PMP	REFO Clock
dsPIC33CK256MP508	80	256K	24K	3	24	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK256MP506	64	256K	24K	3	20	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK256MP505	48	256K	24K	3	19	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK256MP503	36	256K	24K	3	16	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK256MP502	28	256K	24K	3	12	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK128MP508	80	128K	16K	3	24	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK128MP506	64	128K	16K	3	20	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK128MP505	48	128K	16K	3	19	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK128MP503	36	128K	16K	3	16	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK128MP502	28	128K	16K	3	12	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK64MP508	80	64k	8k	3	24	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK64MP506	64	64k	8k	3	20	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK64MP505	48	64k	8k	3	19	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK64MP503	36	64k	8k	3	16	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK64MP502	28	64k	8k	3	12	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1
dsPIC33CK32MP506	64	32k	8k	3	20	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	1	1
dsPIC33CK32MP505	48	32k	8k	3	19	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK32MP503	36	32k	8k	3	16	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	3	0	1
dsPIC33CK32MP502	28	32k	8k	3	12	1	1/8	1	4	2	3	3	3	2	4	1	1	8	3	3	2	0	1

Pin Diagrams

RA1 [] RA2 [] 2 RA3 [] 3	28 RA0 27 MCLR 26 RB15
RA3 [] 3 RA4 [] 4 AVDD [] 5 AVss [] 6 VDD [] 7	25 RB14 24 RB13
AVss 6 VDD 7	23 RB12 22 RB11
VDD 7 7 VSS 8 7 RB0 9 8 RB1 10 10	21 RB10 20 VDD 19 VSS
RB1 [10] RB2 [11] RB3 [12]	8 18 RB9 17 RB8
RB4 [13 RB5 [14	16 RB7 15 RB6

TABLE 3: 28-PIN SSOP

Pin #	Function	Pin #	Function
1	OA1IN-/ANA1/RA1	15	PGC3/ RP38 /SCL2/RB6
2	OA1IN+/AN9/RA2	16	TDO/AN2/CMP3A/ RP39 /SDA3/RB7
3	DACOUT1/AN3/CMP1C/RA3	17	PGD1/AN10/ RP40 /SCL1/RB8
4	AN4/CMP3B/IBIAS3/RA4	18	PGC1/AN11/ RP41 /SDA1/RB9
5	AVdd	19	Vss
6	AVss	20	VDD
7	VDD	21	TMS/ RP42 /PWM3H/RB10
8	Vss	22	TCK/ RP43 /PWM3L/RB11
9	OSCI/CLKI/AN5/RP32/RB0	23	TDI/ RP44 /PWM2H/RB12
10	OSCO/CLKO/AN6/RP33/RB1	24	RP45/PWM2L/RB13
11	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/ SCL3/INT0/RB2	25	RP46 /PWM1H/RB14
12	PGD2/OA2IN-/AN8/ RP35 /RB3	26	RP47/PWM1L/RB15
13	PGC2/OA2IN+/ RP36 /RB4	27	MCLR
14	PGD3/ RP37 /SDA2/RB5	28	OA1OUT/AN0/CMP1A/IBIAS0/RA0

Note: RPn represents remappable peripheral functions.

TABLE 8-8: PORTA REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	_	—	—	—	—	—	—	—	—	—	—	ANSELA<4:0>				
TRISA	_	_	_	_	—	—	—	_	—	—	—			TRISA<4:0>		
PORTA	_	_	_	_	—	—	—	_	—	—	—			RA<4:0>		
LATA	_	—	—	—	—	_	_	_	_	_	_	LATA<4:0>				
ODCA	_	—	—	—	—	_	_	_	_	_	_	ODCA<4:0>				
CNPUA	_	_	_	_	—	—	—	_	—	—	—	CNPUA<4:0>				
CNPDA	_	—	—	—	—	_	_	_	_	_	_		(CNPDA<4:0	>	
CNCONA	ON	—	—	—	CNSTYLE	_	_	_	_	_	_				—	
CNEN0A		_	_	_	_	_	—	—	—			CNEN0A<4:0>				
CNSTATA	_	—	—	—	—	—	—	—	—	_	_	CNSTATA<4:0>				
CNEN1A		—	_	_	_	—	—	_	—			CNEN1A<4:0>				
CNFA		_	_	_	_	_	_	_	_			CNFA<4:0>				

TABLE 8-9: PORTB REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELB	-	—	—	_	-	—	A	NSELB<9:	7>	—	—		A	NSELB<4:	0>	
TRISB		TRISB<15:0>														
PORTB		RB<15:0>														
LATB		LATB<15:0>														
ODCB		ODCB<15:0>														
CNPUB	CNPUB<15:0>															
CNPDB							CN	PDB<15:0	>							
CNCONB	ON	—	—	-	CNSTYLE	_	—	_	_	_	—	_	_	_	_	_
CNEN0B							CN	EN0<15:0	>							
CNSTATB	CNSTATB<15:0>															
CNEN1B	CNEN1B<15:0>															
CNFB	CNFB<15:0>															

REGISTER 8-37: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS2R7 | SS2R6 | SS2R5 | SS2R4 | SS2R3 | SS2R2 | SS2R1 | SS2R0 |
| bit 7 | | | | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

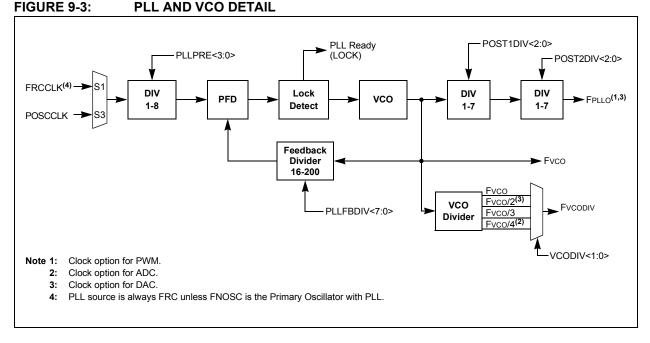
 bit 15-8
 Unimplemented: Read as '0'

 bit 7-0
 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-38: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CAN1RXR7 | CAN1RXR6 | CAN1RXR5 | CAN1RXR4 | CAN1RXR3 | CAN1RXR2 | CAN1RXR1 | CAN1RXR0 |
| bit 7 | | | | | | | bit 0 |


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CAN1RXR<7:0>: Assign CAN1 Input (CAN1RX) to the Corresponding RPn Pin bits See Table 8-4. The Primary Oscillator and internal FRC Oscillator sources can optionally use an on-chip PLL to obtain higher operating speeds. Figure 9-3 illustrates a block diagram of the PLL module. For PLL operation, the following requirements must be met at all times without exception:

- The PLL Input Frequency (FPLLI) must be in the range of 8 MHz to 64 MHz
- The PFD Input Frequency (FPFD) must be in the range of 8 MHz to (FVCO/16) MHz

The VCO Output Frequency (Fvco) must be in the range of 400 MHz to 1600 MHz

REGISTER 11-23: C1TXATIFH: CAN TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFATIF	<31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFATIF	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at F	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					iown	

bit 15-0 TFATIF<31:16>: Unimplemented

Note 1: C1TXATIFH: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).

REGISTER 11-24: C1TXATIFL: CAN TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFATI	F<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFATI	F<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplen	nented bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15-8 **TFATIF<15:8>:** Unimplemented

bit 7-0 TFATIF<7:0>: Transmit FIFO/TXQ Attempt Interrupt Pending bits⁽²⁾

1 = Interrupt is pending

0 = Interrupt is not pending

Note 1: C1TXATIFL: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).

2: TFATIF0 is for the transmit queue.

REGISTER 11-51: C1FLTCONxL: CAN FILTER CONTROL REGISTER x LOW (x = 0 TO 3; a = 0, 4, 8, 12; b = 1, 5, 9, 13)

	a = 0	, 4, 8, 12; D =	1, 5, 9, 13)					
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTENb	_	- FbBP4 FbBP3 FbBP2 FbBP1 Fl						
bit 15						·	bit 8	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTENa		— — FaBP4 FaBP3 FaBP2 FaBP1 FaBP0						
bit 7							bit 0	
Legend:								
R = Readabl		W = Writable		-	nented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	FLTENb: Ena 1 = Filter is e 0 = Filter is d		Accept Messag	ges bit				
bit 14-13	Unimplemer	nted: Read as '	0'					
bit 12-8	FbBP<4:0>:	Pointer to Obje	ct When Filter	b Hits bits				
	00111 = Me s	000 = Reserved ssage matching ssage matching	filter is stored					
	00001 = Me s	ssage matching ssage matching served; Object (filter is stored	in Object 1	ceive message	25		
bit 7		able Filter a to A						
	1 = Filter is e 0 = Filter is d	enabled						
bit 6-5	Unimplemer	nted: Read as '	0'					
bit 4-0	FaBP<4:0>:	Pointer to Obje	ct When Filter	a Hits bits				
		000 = Reserve						
	00110 = Me s	ssage matching ssage matching						
	00001 = Me s	ssage matching ssage matching served; Object (filter is stored	in Object 1	ceive message	es		

REGISTER 12-23: PGxPHASE: PWM GENERATOR x PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPF	IASE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-			PGxP	HASE<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			iown	

bit 15-0 PGxPHASE<15:0>: PWM Generator x Phase Register bits

REGISTER 12-24: PGxDC: PWM GENERATOR x DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxD	C<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxE)C<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own

bit 15-0 **PGxDC<15:0>:** PWM Generator x Duty Cycle Register bits⁽¹⁾

Note 1: Duty cycle values less than '0x0008' should not be used ('0x0020' in High-Resolution mode).

REGISTER 13-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIST	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIST	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplerr	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn		nown		

bit 15-0 EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 13-18: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	_	EISTAT	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTAT	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 EISTAT<25:16>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 15-10: VELxHLD: VELOCITY x COUNTER HOLD REGISTER⁽¹⁾

		D 444 0			D 44/ 0		D/14/ 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELHL	D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELHL	_D<7:0>			
bit 7							bit 0
Legend:							
D - Doodoblo I	hit.	\// = \//ritable bit			antad hit raad	l == (0'	

	U = Unimplemented bit, read	
-n = Value at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 VELHLD<15:0>: Hold for Reading/Writing Velocity Counter Register (VELxCNT) bits

Note 1: This register is not present on all devices.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxGIF. This event occurs when:
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 17-1 and Figure 17-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

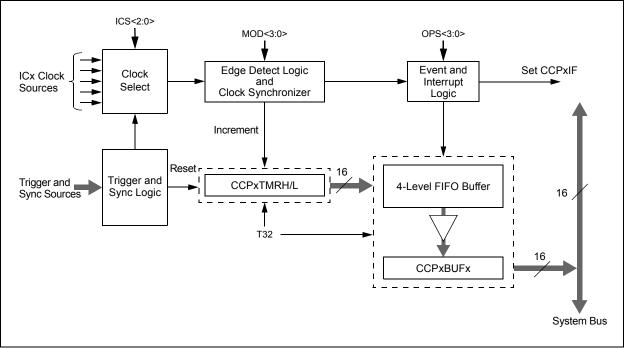
- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—		_	_	_	_		
bit 15							bit 8		
]		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_					_ENGTH<4:0>				
bit 7							bit 0		
Legend:									
R = Reada	hle hit	W = Writable	bit	II = I Inimplem	ented bit, read	as '0'			
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	0.4/0		
	alfon	1 - Dit 15 50	L		areu		OWIT		
hit 15 5	Unimplana	ntad. Dood oo	'o'						
bit 15-5	-	nted: Read as		:+- (1 2)					
bit 4-0			Word Length b	DITS(1,-)					
	11111 = 32- 11110 = 31-								
	1110 – 31- 11101 – 30-								
	11100 = 29 -								
	11011 = 28-								
	11010 = 27 -	-bit data							
	11001 = 26 -								
	11000 = 25-								
	10111 = 24-								
	10110 = 23 - 10101 = 22 -								
	10100 = 21-								
	10011 = 20-								
	10010 = 19 -	-bit data							
	10001 = 18-								
	10000 = 17-								
	01111 = 16-								
	01110 = 15 - 01101 = 14 -								
	01100 = 13-								
	01011 = 12-								
	01010 = 11 -	bit data							
	01001 = 10-								
	01000 = 9-b								
	00111 = 8-b								
	00110 = 7-b 00101 = 6-b								
	00101 = 0-1000 = 5-10000 = 5-100000 = 5-1000000000000000000000000000000000000								
	00011 = 4 -b								
	00010 = 3-b								
	00001 = 2-b								
	00000 = Se	00000 = See MODE<32,16> bits in SPIxCON1L<11:10>							

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

22.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base, upon an event, on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 22-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 22-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0000	0	Edge Detect (16-bit capture)			
0000	1	Edge Detect (32-bit capture)			
0001	0	Every Rising (16-bit capture)			
0001	1	Every Rising (32-bit capture)			
0010	0	Every Falling (16-bit capture)			
0010	1	Every Falling (32-bit capture)			
0011	0	Every Rising/Falling (16-bit capture)			
0011	1	Every Rising/Falling (32-bit capture)			
0100	0	Every 4th Rising (16-bit capture)			
0100	1	Every 4th Rising (32-bit capture)			
0101	0	Every 16th Rising (16-bit capture)			
0101	1	Every 16th Rising (32-bit capture)			

TABLE 22-3: INPUT CAPTURE x MODES

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO	_D<7:0>			
bit 7							bit 0
Legend:							

Legenu.							
R = Readable bit W = Writable bit		U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits This register holds the user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGCOPY command.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 24-6: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0							
PTGT0LIM<15:8>										
bit 15	bit 15 bit 8									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PTGT0LIM<7:0>									
bit 7 bit C									

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	implemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

30.2 Device Calibration and Identification

The dsPIC33CK256MP508 devices have two Identification registers, near the end of configuration memory space, that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 30-18 and Register 30-19.

REGISTER 30-18: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	/<23:16>			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVRE	V<15:8>			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE	:V<7:0>			
bit 7							bit 0
Legend:	R = Read-only bit			U = Unimpler	mented bit		

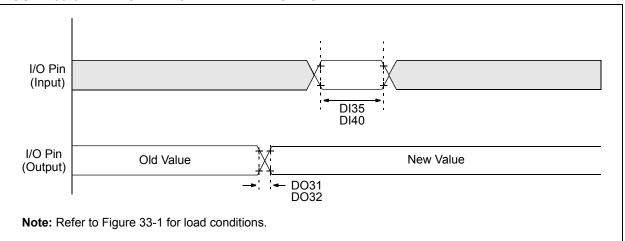
bit 23-0 **DEVREV<23:0>:** Device Revision bits

REGISTER 30-19: DEVID: DEVICE ID REGISTERS

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
_			—	—	—				
bit 23 bit 16									

R	R	R	R R		R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

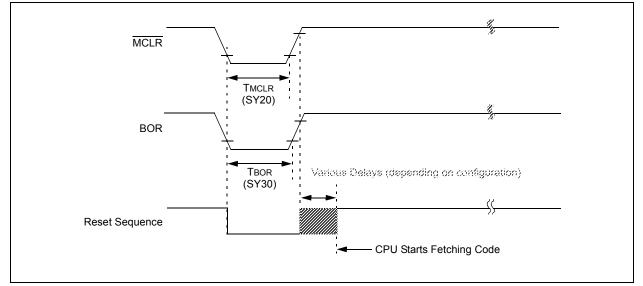
R	R	R	R	R	R	R	R
DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾	DEV2 ⁽¹⁾	DEV1 ⁽¹⁾	DEV0 ⁽¹⁾
bit 7							bit 0


Legend: R = Read-only bit U = Unimplemented bit

bit 23-16 Unimplemented: Read as '1'

- bit 15-8 **FAMID<7:0>:** Device Family Identifier bits
- 0111 1100 = dsPIC33CK256MP508 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits⁽¹⁾

Note 1: See Table 30-4 for the list of Device Identifier bits.


TABLE 33-24: I/O TIMING REQUIREMENTS

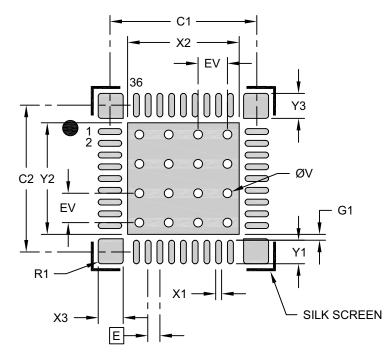
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DO31	TIOR	Port Output Rise Time ⁽²⁾		6.5	9.7	ns			
DO32	TIOF	Port Output Fall Time ⁽²⁾	_	3.2	4.2	ns			
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns			
DI40	Trbp	CNx High or Low Time (input)	2	_	_	TCY			

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized but not tested in manufacturing.

FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 33-25:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS


•	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period		200	_	μs	FNOSC<2:0> are FRC		
SY10	Tost	Oscillator Start-up Time		1024 Tosc		_	Tosc = OSCI period		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	1.5	—	μs			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μs			
SY30	TBOR	BOR Pulse Width (low)	1	_		μs			
SY35	TFSCM	Fail-Safe Clock Monitor Delay		—		μs			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	—		μs			
SY38	Toscdlprc	LPRC Oscillator Start-up Delay	_	—	—	μs			

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \textbf{These parameters are characterized but not tested in manufacturing.}$

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

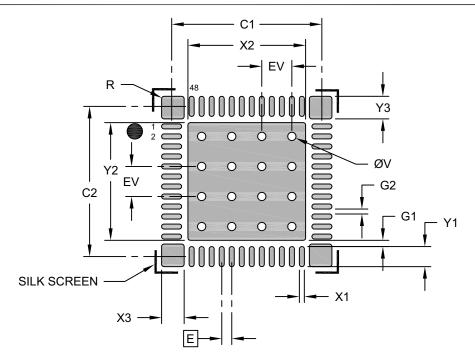
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	n Limits	MIN	NOM	MAX	
Contact Pitch	0.40 BSC				
Optional Center Pad Width	X2			3.80	
Optional Center Pad Length	Y2			3.80	
Contact Pad Spacing	C1		5.00		
Contact Pad Spacing	C2		5.00		
Contact Pad Width (X36)	X1			0.20	
Contact Pad Length (X36)	Y1			0.80	
Corner Pad Width (X4)	X3			0.20	
Corner Pad Length (X36)	Y3			0.85	
Corner Pad Radius	R1		0.10		
Contact Pad to Center Pad (X36)	G1	0.20			
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436A-M5

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.40 BSC		
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

NOTES: