

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck64mp502t-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33CK256MP508 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.0 "Interrupt Controller"**.

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

The dsPIC33CK256MP508 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.0.1 INTCON1 through INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.0.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.0.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.0.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

7.4.0.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

7.4.0.6 Status/Control Registers

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

P/\/_1	P/M/0	R/M_0	11.0	11.0	11-0	11-0	P/M/ 0
GIE			0-0	0-0	0-0	0-0	
bit 15	DISI	SWITCH			_		
511 15							510
11-0	11-0	11-0	11-0	R/W-0	R/W/-0	R/W-0	R/W-0
				INT3EP	INT2EP	INT1EP	INTOEP
bit 7				INTOLI			bit 0
							5110
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	GIE: Global I	nterrupt Enable	e bit				
	1 = Interrupts	s and associate	d IE bits are e	nabled			
	0 = Interrupts	s are disabled,	but traps are s	till enabled			
bit 14	DISI: DISI Ir	nstruction Statu	s bit				
	1 = DISI inst	truction is activ	e				
h# 40							
DIL 13	J = Softwara	trap is onabled	atus dit I				
	1 = Software 0 = Software	trap is disabled	d				
bit 12-9	Unimplemen	nted: Read as '	0'				
bit 8	AIVTEN: Alte	ernate Interrupt	Vector Table I	Enable bit			
	1 = Uses Alte	ernate Interrupt	Vector Table				
	0 = Uses star	ndard Interrupt	Vector Table				
bit 7-4	Unimplemented: Read as '0'						
bit 3	INT3EP: Exte	ernal Interrupt 3	B Edge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
1.11.0		on positive edg					
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detect	Polarity Selec	t bit		
	1 = Interrupt 0	on negative ed	ge Ie				
bit 1	INT1EP: Exte	ernal Interrupt 1	I Edge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ae				
	0 = Interrupt	on positive edg	le				
bit 0	INTOEP: Exte	ernal Interrupt (Edge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

TABLE 8-12: PORTE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSLE		_	—	—	—	—	—	—	-	—		—	—		—	-
TRISE								TRISE<15	:0>							
PORTE								RE<15:0	>							
LATE								LATE<15:	0>							
ODCE								ODCE<15	:0>							
CNPUE	CNPUE<15:0>															
CNPDE							(CNPDE<15	5:0>							
CNCONE	ON CNSTYLE									_						
CNEN0E	CNEN0E<15:0>															
CNSTATE	CNSTATE<15:0>															
CNEN1E	CNEN1E<15:0>															
CNFE	CNFE<15:0>															

|--|

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

|--|

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

	DAM 0	D44/ 0	DAMO	DANA	D/M/ O	DAMA		
							R/W-U	
DBOEWE	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSELU	
DIT 15							bit 8	
	5444.0	5444	D #44 0	5444.0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	0-0	U-0	R/W-0	
	LOWIF(",2)	DONEIF	HALFIF	OVRUNIF		—	HALFEN	
bit /							bit 0	
г. .								
Legend:			.,					
R = Readable	e bit	W = Writable t	Dit		ented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own	
 bit 15 DBUFWF: DMA Buffered Data Write Flag bit⁽¹⁾ 1 = The content of the DMA buffer has not been written to the location specified in DMADSTn or DMASRCn in Null Write mode 0 = The content of the DMA buffer has been written to the location specified in DMADSTn or DMASRCn in Null Write mode 								
bit 14-8	CHSEL<6:0>	: DMA Channel	Trigger Selec	tion bits				
	See Table 10-	1 for a complet	e list.					
bit 7	HIGHIF: DMA	High Address	Limit Interrupt	Flag bit ^(1,2)				
	1 = The DMA	channel has a	tempted to ac	cess an address	s higher than D	MAH or the up	per limit of the	
	data RAN	I space						
	0 = The DMA	channel has n	ot invoked the	high address lir	mit interrupt			
bit 6	LOWIF: DMA	Low Address L	imit Interrupt	Flag bit ^(1,2)				
	1 = The DMA the SER	(07FFh)	ittempted to a	ccess the DIMA	SFR address	lower than Divi	AL, but above	
	0 = The DMA	channel has n	ot invoked the	low address lim	nit interrupt			
bit 5	DONEIF: DM	A Complete Op	eration Interru	ıpt Flag bit ⁽¹⁾				
	If CHEN = 1:							
	1 = The previo	ous DMA sessio	on has ended	with completion				
	0 = 1 he curre	nt DMA sessior	n has not yet o	completed				
	1 = The previo	ous DMA sessi	on has ended	with completion				
	0 = The previo	ous DMA sessi	on has ended	without complet	ion			
bit 4	HALFIF: DMA	A 50% Waterma	ark Level Inter	rupt Flag bit ⁽¹⁾				
	1 = DMACNT 0 = DMACNT	n has reached t n has not reach	the halfway po led the halfwa	oint to 0000h y point				
bit 3	OVRUNIF: DI	MA Channel Ov	errun Flag bit	(1)				
	1 = The DMA 0 = The overr	channel is trigg un condition ha	ered while it is s not occurred	s still completing	the operation	based on the p	revious trigger	
bit 2-1	Unimplemen	ted: Read as '0	3					
bit 0	HALFEN: Hal	fway Completio	on Watermark	bit				
	1 = Interrupts 0 = An interru	are invoked wh pt is invoked or	nen DMACNTr nly at the com	n has reached its pletion of the tra	s halfway point nsfer	t and at comple	etion	
Note 1: 0-	tting these flag	o in coffware de	on not conce	to on interruct				
NOLE T. SE	and these hag							

REGISTER 10-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1		
CON		SIDL	BRSDIS	BUSY	WFT1	WFT0	WAKFIL ⁽¹⁾		
bit 15							bit 8		
DAVA				DAMO					
			R/W-U		R/W-U		R/W-U		
LIKSEL ⁽¹⁾	PXEDIS ⁽¹⁾	150CRCEN ⁽¹⁾	DINCIN14	DINCINT3	DINGINTZ	DINCINTT	DINCINTU bit 0		
							DILO		
Legend:									
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15	CON: CAN Enable bit								
	$1 = CAN \mod 0$ $0 = CAN \mod 0$	lule is enabled							
bit 14	Unimplemen	ted: Read as '0'							
bit 13	SIDL: CAN S	top in Idle Contro	l bit						
	1 = Stops mo	dule operation in	Idle mode						
	0 = Does not	stop module ope	ration in Idle	mode					
bit 12	BRSDIS: Bit	Rate Switching (I	BRS) Disable	e bit					
	1 = Bit Rate S 0 = Bit Rate S	Switching is disab Switching depend	led, regardle Is on BRS in	ess of BRS in t the transmit m	he transmit me lessage object	ssage object			
bit 11	BUSY: CAN I	Module is Busy b	it						
	1 = The CAN 0 = The CAN	module is active module is inactive	/e						
bit 10-9	WFT<1:0>: S	electable Wake-	up Filter Time	e bits					
	11 = T11FILTE	R							
	10 = 110FILTE 01 = T01FILTE	ER ER							
	00 = T00 FILTE	ĒR							
bit 8	WAKFIL: Ena	able CAN Bus Lir	ne Wake-up F	-ilter bit ⁽¹⁾					
	1 = Uses CAI 0 = CAN bus	N bus line filter fo line filter is not u	r wake-up sed for wake	-up					
bit 7	CLKSEL: Mo	dule Clock Source	e Select bit ^{(*}	1)					
	1 = Auxiliary 0 = CAN cloc	clock is active wh k is not active wh	ien module is ien module is	s enabled s enabled					
bit 6	PXEDIS: Pro	tocol Exception E	vent Detecti	on Disabled bi	t ⁽¹⁾				
	A recessive " 1 = Protocol I 0 = If a Proto	reserved bit" follo Exception is treat col Exception is c	wing a reces ed as a form letected, CA	ssive FDF bit is error N will enter the	s called a Proto	col Exception. g state			
bit 5	ISOCRCEN:	Enable ISO CRC	in CAN FD I	Frames bit ⁽¹⁾					
	1 = Includes : 0 = Does not	stuff bit count in (include stuff bit c	CRC field and ount in CRC	d uses non-zei field and uses	o CRC initializa CRC initializat	ation vector tion vector with	all zeros		
bit 4-0	DNCNT<4:0>	•: DeviceNet™ Fi	Iter Bit Numb	per bits					
	10011-1111 10010 = Con	10011-11111 = Invalid selection (compares up to 18 bits of data with EID) 10010 = Compares up to Data Byte 2, bit 6 with EID17							
	 00001 = Con 00000 = Doe	npares up to Data s not compare da	a Byte 0, bit 7 ata bytes	with EID0					

REGISTER 11-2: C1CONL: CAN CONTROL REGISTER LOW

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 11-51: C1FLTCONxL: CAN FILTER CONTROL REGISTER x LOW (x = 0 TO 3; a = 0, 4, 8, 12; b = 1, 5, 9, 13)

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTENb		—	FbBP4	FbBP3	FbBP2	FbBP1	FbBP0		
bit 15							bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTENa	—	—	FaBP4	FaBP3	FaBP2	FaBP1	FaBP0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15 FLTENb: Enable Filter b to Accept Messages bit 1 = Filter is enabled 0 = Filter is disabled									
bit 14-13	Unimplemented: Read as '0'								
bit 12-8	FbBP<4:0>:	Pointer to Object	t When Filter	b Hits bits					
	11111 to 110 00111 = Mes 00110 = Mes	000 = Reserved ssage matching ssage matching	filter is stored filter is stored	in Object 7 in Object 6					
	00010 = Mes 00001 = Mes 00000 = Res	ssage matching ssage matching served; Object 0	filter is stored filter is stored is the TX Que	in Object 2 in Object 1 eue and can't re	eceive message	es			
bit 7	FLTENa: Ena	able Filter a to A	ccept Messag	jes bit	-				
	1 = Filter is e 0 = Filter is d	nabled lisabled							
bit 6-5	Unimplemer	nted: Read as '0	,						
bit 4-0	FaBP<4:0>:	Pointer to Object	t When Filter	a Hits bits					
	11111 to 11000 = Reserved 00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6								
	 Wessage matching filter is stored in Object 0 00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1 00000 = Reserved; Object 0 is the TX Queue and can't receive messages 								

REGISTER 12-21: PGxLEBL: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			LEE	3<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾	R-0 ⁽¹⁾		
	LEB<7:0>								
bit 7							bit 0		
Legend:									
R = Readable	able bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		

bit 15-0 LEB<15:0>: Leading-Edge Blanking Period bits Leading-Edge Blanking period. The 3 LSbs of the blanking time are not used, providing a blanking resolution of 8 PGx_clks. The minimum blanking period is 8 PGx_clks which occurs when LEB<15:3> = 0.

Note 1: Bits<2:0> are read-only and always remain as '0'.

REGISTER 13-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR (1°) = Bit is set (0°) = Bit is cleared x = Bit is unknown

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 13-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	—	—	EIEN<	25:24>
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 EIEN<25:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 13-23: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			١E<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bi	it	U = Unimplem	ented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 IE<15:0>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 13-24: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	IE<2	5:24>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IE<23:16>								
bit 7 bit								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 IE<25:16>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

15.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (DS70000601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK256MP508 family implements 2 instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 15-1 illustrates the Quadrature Encoder Interface signals.

The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 15-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.

FIGURE 15-1: QUADRATURE ENCODER INTERFACE SIGNALS

R/W-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
SLPEN	ACTIVE		—	BCLKMOD	BCLKSEL1	BCLKSEL0	HALFDPLX
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RUNOVE		STSFL1	STSFI 0	COEN	UTXINV	FLO1	FL Q0
bit 7		0.011	0.0100		•		bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	SI DEN: Run (During Sleen Fi	nable bit				
bit 10		G clock runs du	ring Sleep				
	0 = UART BR	G clock is turne	d off during SI	еер			
bit 14	ACTIVE: UAR	T Running Stat	us bit				
		ck request is ac	tive (user can	not update the		ODEH register	rs)
bit 13-12	Unimplement	ed: Read as '0		can upuale line			5)
bit 11	BCLKMOD: B	aud Clock Gen	eration Mode	Select bit			
	1 = Uses fract	ional Baud Rate	e Generation	001001.211			
	0 = Uses lega	cy divide-by-x c	ounter for bau	d clock generati	on (x = 4 or 16	depending on	the BRGH bit)
bit 10-9	BCLKSEL<1:	0>: Baud Clock	Source Selec	tion bits			
	11 = AFvco/3						
	10 = FOSC 01 = Reserved	d					
	00 = Fosc/2 (I	FP)					
bit 8	HALFDPLX: L	JART Half-Dup	lex Selection N	/lode bit			
	1 = Half-Duple	ex mode: UxTX	is driven as ar	n output when t	ransmitting and	tri-stated whe	n TX is Idle
hit 7		x mode: Ux I X I	s driven as an	output at all tim	es when both l	JARIEN and U	I XEN are set
DIL 7	1 = When an	Overflow Error		tition is detecte	d the RX shift	er continues tr	run so as to
	remain sy	inchronized wit	h incoming R	K data; data is i	not transferred	to UxRXREG	when it is full
	(i.e., no U	xRXREG data	is overwritten)				Para da la fa
	0 = when an (Legacy n	Overflow Error node)	(UERR) cond	lition is detecte	a, the RX shift	er stops accep	ting new data
bit 6	URXINV: UAR	T Receive Pola	arity bit				
	1 = Inverts RX 0 = Input is no	(polarity; Idle s t inverted; Idle	tate is low state is high				
bit 5-4	STSEL<1:0>:	Number of Sto	p Bits Selectio	n bits			
	11 = 2 Stop bi	ts sent, 1 check	ked at receive				
	10 = 2 Stop bi	ts sent, 2 check	ked at receive	ivo			
	00 = 1 Stop bi	t sent, 1 checke	ed at receive				
bit 3	COEN: Enable	e Legacy Check	sum (C0) Trar	smit and Rece	ive bit		
	1 = Checksum	n Mode 1 (enhar	nced LIN chec	ksum in LIN mo	de; add all TX/	RX words in all	other modes)
	0 = Checksum	n Mode 0 (legad	y LIN checksu	Im in LIN mode	; not used in al	I other modes)	

REGISTER 16-2: UXMODEH: UARTX CONFIGURATION REGISTER HIGH

18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \cdot FCY/2) - 2$

- **Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.
 - 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
 - **3:** Typical value of delay varies from 110 ns to 150 ns.
 - 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Fox	Faci	I2CxBF	RG Value
FCY	FSCL	Decimal	Hexadecimal
100 MHz	1 MHz	41	29
100 MHz	400 kHz	116	74
100 MHz	100 kHz	491	1EB
80 MHz	1 MHz	32	20
80 MHz	400 kHz	92	5C
80 MHz	100 kHz	392	188
60 MHz	1 MHz	24	18
60 MHz	400 kHz	69	45
60 MHz	100 kHz	294	126
40 MHz	1 MHz	15	0F
40 MHz	400 kHz	45	2D
40 MHz	100 kHz	195	C3
20 MHz	1 MHz	7	7
20 MHz	400 kHz	22	16
20 MHz	100 kHz	97	61

TABLE 18-1:I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	
bit 15							bit 8	
								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	
bit 7							bit 0	
Levende								
Legena:	. L :4		.:4		a a meta al la itu ma a a			
R = Readable		vv = vvritable i	DIL	0' = 0	nented bit, read	ias u v = Ditio unkn		
	PUR	I = DILIS SEL			areu		IOWII	
hit 15	G2D4T: Gate	2 Data Source	4 True Enable	hit				
bit 15	1 = Data Sou	rce 4 signal is e	nabled for Ga	te 2				
	0 = Data Sou	rce 4 signal is c	lisabled for Ga	ate 2				
bit 14	G2D4N: Gate	2 Data Source	4 Negated Er	nable bit				
	1 = Data Sou	rce 4 inverted s	ignal is enable	ed for Gate 2				
	0 = Data Sour	rce 4 inverted s	ignal is disable	ed for Gate 2				
DIT 13	G2D31: Gate	2 Data Source	3 True Enable	to 2				
	0 = Data Sour	rce 3 signal is c	lisabled for Ga	ate 2				
bit 12	G2D3N: Gate	2 Data Source	3 Negated Er	nable bit				
	1 = Data Sou	rce 3 inverted s	ignal is enable	ed for Gate 2				
	0 = Data Sou	0 = Data Source 3 inverted signal is disabled for Gate 2						
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit							
	1 = Data Sou	rce 2 signal is e rce 2 signal is c	enabled for Ga	te 2 ate 2				
bit 10	G2D2N: Gate	2 Data Source	2 Negated Er	nable bit				
	1 = Data Source 2 inverted signal is enabled for Gate 2							
	0 = Data Sour	rce 2 inverted s	ignal is disable	ed for Gate 2				
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit							
	1 = Data Sou	rce 1 signal is e	enabled for Ga	te 2				
hit 0		rce i signal is c	Isabled for Ga	ite Z				
DILO	1 = Data Source	2 Data Source	ianal is enable	ad for Gate 2				
	0 = Data Sou	rce 1 inverted s	ignal is disable	ed for Gate 2				
bit 7	G1D4T: Gate	1 Data Source	4 True Enable	e bit				
	1 = Data Sour 0 = Data Sour	rce 4 signal is e rce 4 signal is c	nabled for Ga lisabled for Ga	te 1 ite 1				
bit 6	G1D4N: Gate	1 Data Source	4 Negated Er	nable bit				
	1 = Data Sou	rce 4 inverted s	ignal is enable	ed for Gate 1				
	0 = Data Sour	rce 4 inverted s	ignal is disable	ed for Gate 1				
bit 5	G1D31: Gate	1 Data Source	3 Irue Enable	e bit				
	1 = Data Sour	rce 3 signal is e	lisabled for Ga	ite 1				
bit 4	G1D3N: Gate	1 Data Source	3 Negated Er	nable bit				
	1 = Data Sou 0 = Data Sou	rce 3 inverted s rce 3 inverted s	ignal is enable	ed for Gate 1 ed for Gate 1				
			-					

REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	 1 = Data Source 2 signal is enabled for Gate 3 0 = Data Source 2 signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 30 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = Data Source 1 signal is enabled for Gate 30 = Data Source 1 signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 30 = Data Source 1 inverted signal is disabled for Gate 3

REGISTER 24-11: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGAI	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	.DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable k	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds the user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGADD command.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 24-12: PTGL0: PTG LITERAL 0 REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL	_0<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTG	L0<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 6-bit value to be written to the CNVCHSEL<5:0> bits (ADCON3L<5:0>) with the PTGCTRL Step command.

- Note 1: These bits are read-only when the module is executing Step commands.
 - 2: The PTG strobe output is typically connected to the ADC Channel Select register. This allows the PTG to directly control ADC channel switching. See the specific device data sheet for connections of the PTG output.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three

Field

cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

In dsPIC33CK256MP508 devices, read and Note: Read-Modify-Write operations on non-CPU Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices.

Note: For more details on the instruction set, refer to the "16-Bit MCU and DSC Programmer's Reference Manual" (DS70000157).

Description

#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a \in \{b, c, d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)

dsPIC33CK256MP508 FAMILY

Peripheral Trigger Generator (PTG) Peripheral Trigger Generator. See PTG.	. 457
Pin and ANSELx Availability	. 116
Pinout I/O Descriptions (table)	18
PMP	
Control Registers	402
Power-Saving Features	. 493
Clock Frequency and Switching	493
Resources	495
Program Address Space	
Memory Man for dsPIC33CK128MP50X/20X	
Devices	40
Memory Map for dsPIC33CK256MP50X/20X	+0
Devices	40
Memory Map for dsPIC33CK32MP50X/20X	
Devices	41
Memory Map for dsPIC33CK64MP50X/20X	
Devices	41
Memory Map for dsPIC33CKXXXMP50X/20X	
Devices	39
Program Memory	
Address Space	39
Construction	74
Data Access from Program Memory Using	
Table Instructions	75
Table Read High Instructions (TBLRDH)	
Table Read I ow Instructions (TBLRDL)	75
Interfacing with Data Memory Spaces	
Organization	42
Reset Vector	42
Programmer's Model	31
Register Descriptions	31
PTG	
Command Options	469
Control Registers	459
Features	457
Input Descriptions	471
Output Descriptions	171
· · · · · · · · · · · · · · · · · · ·	
Step Command Format/Description	468

Q OFI

QEI	
Control and Status Registers	334
Truth Table	332
Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources	
Register Maps	
Configuration	
Interrupt Enable	
Interrupt Flag	
Interrupt Priority	
PMD	
PORTA	
PORTB	
PORTC	
PORTD	
PORTE	
PPS Input Control	
PPS Output Control	177

Registers	
ACLKCON1 (Auxiliary Clock Control) 196	5
ADCMPxCON (ADC Digital Comparator x	
Control) 315	5
ADCMPxENH (ADC Digital Comparator x	
Channel Enable High) 316	
ADCMDyENIL (ADC Digital Comparator y	,
Channel Enable Low)	j
ADCON1H (ADC Control 1 High) 295	j
ADCON1L (ADC Control 1 Low) 294	,
ADCON2H (ADC Control 2 High) 297	,
ADCON2L (ADC Control 2 Low) 296	5
ADCON3H (ADC Control 3 High) 299	,
ADCON3L (ADC Control 3 Low)	5
ADCON4H (ADC Control 4 High) 301	
ADCON4L (ADC Control 4 Low) 300)
ADCON5H (ADC Control 5 High) 303	
ADCONST (ADC COntrol 5 Law)	,
ADCONSE (ADC CONTROLS LOW)	
ADCOREXH (Dedicated ADC Core x	_
Control High) 305	j
ADCORExL (Dedicated ADC Core x	
Control Low) 304	-
ADEIEH (ADC Early Interrupt Enable High)	,
ADEIEL (ADC Early Interrupt Enable Low)	,
ADEISTATH (ADC Early Interrupt Status High) 308	3
ADEISTATI (ADC Early Interrupt Status Low) 308	ł
ADELYCON (ADC Digital Eiltor y Control) 317	,
ADIEL (ADC Interrupt Enable High)	
ADIEL (ADC Interrupt Enable Law)	
ADIEL (ADC Interrupt Enable Low)	
ADLVLTRGH (ADC Level-Sensitive Trigger	
Control High) 306	j
ADLVLTRGL (ADC Level-Sensitive Trigger	
Control Low) 306	;
ADMOD0H (ADC Input Mode Control 0 High)	,
ADMOD0L (ADC Input Mode Control 0 Low)	,
ADMOD1H (ADC Input Mode Control 1 High) 310)
ADMOD1L (ADC Input Mode Control 1 Low) 310)
ADSTATH (ADC Data Ready Status High) 312	,
ADSTATI (ADC Data Ready Status Low) 312	,
ADTRICAL (ADC Data Ready Status Low)	•
Selection Low/Hign))
AMPCON1H (Op Amp Control High)	5
AMPCON1L (Op Amp Control Low) 482	-
ANSELx (Analog Select for PORTx) 118	5
APLLDIV1 (APLL Output Divider) 198	5
APLLFBD1 (APLL Feedback Divider) 197	,
BIASCON (Current Bias Generator Control)	5
C1BDIAG0H (CAN Bus Diagnostics 0 High))
C1BDIAG0L (CAN Bus Diagnostics 0 Low) 249)
C1BDIAG1H (CAN Bus Diagnostics 1 High) 250)
C1BDIAG1L (CAN Bus Diagnostics 1 Low) 251	
C1CONH (CAN Control High) 215	
CTCONH (CAN CONTROL AND)	,
CTCONE (CAN CONTROLLOW)	
C1DB1CFGH (CAN Data Bit Time	
Configuration High) 219)
C1DBTCFGL (CAN Data Bit Time	
Configuration Low) 219)
C1FIFOBAH (CAN Message Memory Base	
Address High)	5
C1FIFOBAL (CAN Message Memory Base	
Address Low) 233	3
C1FIFOCONHX (CAN FIFO Control x High) 237	,
C1EIEOCONI x (CAN EIEO Control x Low) 239	ł