Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|----------------------------------------------------------------------------------| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 100MHz | | Connectivity | CANbus, I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT | | Number of I/O | 21 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 8K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 12x12b; D/A 3x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck64mp502t-i-ss | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### **Table of Contents** | 1.0 | Device Overview | | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 2.0 | Guidelines for Getting Started with 16-Bit Digital Signal Controllers | 23 | | 3.0 | CPU | | | 4.0 | Memory Organization | 39 | | 5.0 | Flash Program Memory | | | 6.0 | Resets | | | 7.0 | Interrupt Controller | 95 | | 8.0 | I/O Ports | 115 | | 9.0 | Oscillator with High-Frequency PLL | 179 | | 10.0 | Direct Memory Access (DMA) Controller | 203 | | 11.0 | Controller Area Network (CAN FD) Module | 213 | | 12.0 | | 257 | | 13.0 | High-Speed, 12-Bit Analog-to-Digital Converter (ADC) | 291 | | 14.0 | High-Speed Analog Comparator with Slope Compensation DAC | 319 | | 15.0 | Quadrature Encoder Interface (QEI) | 331 | | 16.0 | Universal Asynchronous Receiver Transmitter (UART) | 351 | | 17.0 | Serial Peripheral Interface (SPI) | 373 | | 18.0 | Inter-Integrated Circuit (I ² C) | 391 | | 19.0 | Parallel Master Port (PMP) | 401 | | | Single-Edge Nibble Transmission (SENT) | | | | Timer1 | | | | Capture/Compare/PWM/Timer Modules (SCCP/MCCP) | | | | Configurable Logic Cell (CLC) | | | | Peripheral Trigger Generator (PTG) | | | | 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator | | | | Current Bias Generator (CBG) | | | 27.0 | Operational Amplifier | 481 | | | Deadman Timer (DMT) | | | | Power-Saving Features | | | 30.0 | Special Features | 505 | | 31.0 | Instruction Set Summary | | | 32.0 | and the state of t | | | | Electrical Characteristics | | | | Packaging Information | | | | endix A: Revision History | | | | X | | | | Microchip Web Site | | | | omer Change Notification Service | | | | omer Support | | | Drod | uct Identification System | 617 | #### 3.4.3 CPU CONTROL REGISTERS #### REGISTER 3-1: SR: CPU STATUS REGISTER | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/C-0 | R/C-0 | R-0 | R/W-0 | |--------|-------|-------------------|-------------------|-------|-------|-----|-------| | OA | ОВ | SA ⁽³⁾ | SB ⁽³⁾ | OAB | SAB | DA | DC | | bit 15 | | | | | | | bit 8 | | R/W-0 ⁽²⁾ | R/W-0 ⁽²⁾ | R/W-0 ⁽²⁾ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |----------------------|----------------------|----------------------|-----|-------|-------|-------|-------| | IPL2 ⁽¹⁾ | IPL1 ⁽¹⁾ | IPL0 ⁽¹⁾ | RA | N | OV | Z | С | | bit 7 | | | | | | | bit 0 | | Legend: | C = Clearable bit | | | |-------------------|-------------------|-----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | d as '0' | | -n = Value at POR | '1'= Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed bit 14 **OB:** Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed bit 13 **SA:** Accumulator A Saturation 'Sticky' Status bit (3) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation 'Sticky' Status bit (3) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulator A or B has overflowed 0 = Neither Accumulator A or B has overflowed bit 10 SAB: SA || SB Combined Accumulator 'Sticky' Status bit 1 = Accumulator A or B is saturated or has been saturated at some time 0 = Neither Accumulator A or B is saturated bit 9 DA: DO Loop Active bit 1 = DO loop is in progress 0 = DO loop is not in progress bit 8 **DC**: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations. #### REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED) bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 **OV:** MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 **Z:** MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred - Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations. #### 9.0 **OSCILLATOR WITH** HIGH-FREQUENCY PLL Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module with High-Speed PLL" (DS70005255) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The dsPIC33CK256MP508 family oscillator with high-frequency PLL includes these characteristics: - · On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources - · Auxiliary PLL (APLL) Clock Generator to Boost Operating Frequency for Peripherals - · Doze mode for System **Power Savings** - Scalable Reference Clock Output (REFCLKO) - · On-the-Fly Clock Switching between Various **Clock Sources** - · Fail-Safe Clock Monitoring (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown A block diagram of the dsPIC33CK256MP508 oscillator system is shown in Figure 9-1. FIGURE 9-1: dsPIC33CK256MP508 CORE CLOCK SOURCES BLOCK DIAGRAM ### REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED) bit 3 **CF**: Clock Fail Detect bit⁽³⁾ 1 = FSCM has detected a clock failure0 = FSCM has not detected a clock failure bit 2-1 **Unimplemented:** Read as '0' bit 0 **OSWEN:** Oscillator Switch Enable bit 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete Note 1: Writes to this register require an unlock sequence. - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes. - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap. #### REGISTER 11-32: C1FIFOCONHx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) HIGH | R/W-0 |------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | PLSIZE2 ⁽¹⁾ | PLSIZE1 ⁽¹⁾ | PLSIZE0 ⁽¹⁾ | FSIZE4 ⁽¹⁾ | FSIZE3 ⁽¹⁾ | FSIZE2 ⁽¹⁾ | FSIZE1 ⁽¹⁾ | FSIZE0 ⁽¹⁾ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-1 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-------|-------|--------|--------|--------|--------|--------| | _ | TXAT1 | TXAT0 | TXPRI4 | TXPRI3 | TXPRI2 | TXPRI1 | TXPRI0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 PLSIZE<2:0>: Payload Size bits⁽¹⁾ 111 **= 64** data bytes 110 = 48 data bytes 101 = 32 data bytes 100 = 24 data bytes 011 **= 20** data bytes 010 = 16 data bytes 001 = 12 data bytes 000 = 8 data bytes bit 12-8 **FSIZE<4:0>:** FIFO Size bits⁽¹⁾ 11111 = FIFO is 32 messages deep . . 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep bit 7 **Unimplemented:** Read as '0' bit 6-5 **TXAT<1:0>:** Retransmission Attempts bits This feature is enabled when RTXAT (C1CONH<0>) is set. 11 = Unlimited number of retransmission attempts 10 = Unlimited number of retransmission attempts 01 = Three retransmission attempts 00 = Disables retransmission attempts bit 4-0 **TXPRI<4:0>:** Message Transmit Priority bits 11111 = Highest message priority . . . 00000 = Lowest message priority **Note 1:** These bits can only be modified in Configuration mode (OPMOD<2:0> = 100). #### REGISTER 11-35: C1TEFCONH: CAN TRANSMIT EVENT FIFO CONTROL REGISTER HIGH | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-------|-------|--------------------------|-------|-------| | _ | _ | _ | | | FSIZE<4:0> ⁽¹ |) | | | bit 15 | | | | | | | bit 8 | | U-0 | | | |-------|-------------|-----|-----|-----|-----|-----|-----|--|--|--| | _ | _ | _ | _ | _ | _ | _ | _ | | | | | bit 7 | bit 7 bit 0 | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FSIZE<4:0>:** FIFO Size bits⁽¹⁾ 11111 = FIFO is 32 messages deep . . . 00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep bit 7-0 **Unimplemented:** Read as '0' **Note 1:** These bits can only be modified in Configuration mode (OPMOD<2:0> = 100). #### REGISTER 12-11: LFSR: LINEAR FEEDBACK SHIFT REGISTER | U-0 | R/W-0 |--------|-------|-------|-------|------------|-------|-------|-------| | _ | | | | LFSR<14:8> | | | | | bit 15 | | | | | | | bit 8 | | R/W-0 | | |-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | LFSR<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **Unimplemented:** Read as '0' bit 14-0 LFSR<14:0>: Linear Feedback Shift Register bits A read of this register will provide a 15-bit pseudorandom value. #### REGISTER 14-4: DACxCONH: DACx CONTROL HIGH REGISTER | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | |--------|-----|-----|-----|-----|-----|-----------|-------| | _ | _ | _ | _ | _ | _ | TMCB<9:8> | | | bit 15 | | | | | | | bit 8 | | R/W-0 |-------|-------|-------|-------|--------|-------|-------|-------| | | | | TMCE | 3<7:0> | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared bit 15-10 **Unimplemented:** Read as '0' bit 9-0 TMCB<9:0>: DACx Leading-Edge Blanking bits These register bits specify the blanking period for the comparator, following changes to the DAC output during Change-of-State (COS), for the input signal selected by the HCFSEL<3:0> bits in Register 14-9. #### REGISTER 14-5: DACxCONL: DACx CONTROL LOW REGISTER | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |--------|------------------------|------------------------|-----|-----|-------|--------|--------| | DACEN | IRQM1 ^(1,2) | IRQM0 ^(1,2) | _ | _ | CBE | DACOEN | FLTREN | | bit 15 | | | | | | | bit 8 | | R/W-0 |---------|--------|--------|--------|--------|--------|---------|---------| | CMPSTAT | CMPPOL | INSEL2 | INSEL1 | INSEL0 | HYSPOL | HYSSEL1 | HYSSEL0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared bit 15 DACEN: Individual DACx Module Enable bit 1 = Enables DACx module 0 = Disables DACx module to reduce power consumption; any pending Slope mode and/or underflow conditions are cleared bit 14-13 IRQM<1:0>: Interrupt Mode select bits^(1,2) 11 = Generates an interrupt on either a rising or falling edge detect 10 = Generates an interrupt on a falling edge detect 01 = Generates an interrupt on a rising edge detect 00 = Interrupts are disabled bit 12-11 Unimplemented: Read as '0' **Note 1:** Changing these bits during operation may generate a spurious interrupt. 2: The edge selection is a post-polarity selection via the CMPPOL bit. #### 16.2 Character Frame A typical UART character frame is shown in Figure 16-2. The Idle state is high with a 'Start' condition indicated by a falling edge. The Start bit is followed by the number of data, parity/address detect and Stop bits defined by the MOD<3:0> (UxMODE<3:0>) bits selected. #### FIGURE 16-2: UART CHARACTER FRAME #### 16.3 Data Buffers Both transmit and receive functions use buffers to store data shifted to/from the pins. These buffers are FIFOs and are accessed by reading the SFRs, UxTXREG and UxRXREG, respectively. Each data buffer has multiple flags associated with its operation to allow software to read the status. Interrupts can also be configured based on the space available in the buffers. The transmit and receive buffers can be cleared and their pointers reset using the associated TX/RX Buffer Empty Status bits, UTXBE (UxSTAH<5>) and URXBE (UxSTAH<1>). #### 16.4 Protocol Extensions The UART provides hardware support for LIN/J2602, IrDA®, DMX and smart card protocol extensions to reduce software overhead. A protocol extension is enabled by writing a value to the MOD<3:0> (UxMODE<3:0>) selection bits and further configured using the UARTx Timing Parameter registers, UxP1 (Register 16-9), UxP2 (Register 16-10), UxP3 (Register 16-11) and UxP3H (Register 16-12). Details regarding operation and usage are discussed in their respective chapters. Not all protocols are available on all devices. Please refer to the specific device data sheet for availability. #### REGISTER 16-3: UXSTA: UARTX STATUS REGISTER | R/W-0 |--------|-------|--------|-------|-------|--------|-------|-------| | TXMTIE | PERIE | ABDOVE | CERIE | FERIE | RXBKIE | OERIE | TXCIE | | bit 15 | | | | | | | bit 8 | | R-1 | R-0 | R/W-0, HS | R/W-0, HC | R-0 | R/W-0, HC | R/W-0, HC | R/W-0, HC | |-------|------|-----------|-----------|------|-----------|-----------|-----------| | TRMT | PERR | ABDOVF | CERIF | FERR | RXBKIF | OERR | TXCIF | | bit 7 | | | | | | | bit 0 | | Legend: | HS = Hardware Settable bit | HC = Hardware Clearable b | it | |-------------------|----------------------------|-----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | d as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 **TXMTIE:** Transmit Shifter Empty Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 14 PERIE: Parity Error Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 13 ABDOVE: Auto-Baud Rate Acquisition Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 12 CERIE: Checksum Error Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 11 FERIE: Framing Error Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 10 RXBKIE: Receive Break Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 9 **OERIE:** Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 8 TXCIE: Transmit Collision Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 7 TRMT: Transmit Shifter Empty Interrupt Flag bit (read-only) 1 = Transmit Shift Register (TSR) is empty (end of last Stop bit when STPMD = 1 or middle of first Stop bit when STPMD = 0) 0 = Transmit Shift Register is not empty bit 6 PERR: Parity Error/Address Received/Forward Frame Interrupt Flag bit LIN and Parity Modes: 1 = Parity error detected 0 = No parity error detected Address Mode: 1 = Address received 0 = No address detected All Other Modes: Not used. To set up the SPIx module for Audio mode: - 1. Clear the SPIxBUFL and SPIxBUFH registers. - 2. If using interrupts: - Clear the interrupt flag bits in the respective IFSx register. - b) Set the interrupt enable bits in the respective IECx register. - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority. - Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1. - 4. Clear the SPIROV bit (SPIxSTATL<6>). - 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>). - 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers. #### 21.1 Timer1 Control Register #### REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER | R/W-0 | U-0 | R/W-0 | R/W-0 | R-0 | R-0 | R/W-0 | R/W-0 | |--------------------|-----|-------|--------|-------|-------|-------|-------| | TON ⁽¹⁾ | _ | SIDL | TMWDIS | TMWIP | PRWIP | TECS1 | TECS0 | | bit 15 | | | | | | | bit 8 | | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | |-------|-----|--------|--------|-----|----------------------|--------------------|-------| | TGATE | _ | TCKPS1 | TCKPS0 | _ | TSYNC ⁽¹⁾ | TCS ⁽¹⁾ | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **TON:** Timer1 On bit⁽¹⁾ 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 **Unimplemented:** Read as '0' bit 13 SIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12 TMWDIS: Asynchronous Timer1 Write Disable bit 1 = Timer writes are ignored while a posted write to TMR1 or PR1 is synchronized to the asynchronous clock domain 0 = Back-to-back writes are enabled in Asynchronous mode bit 11 TMWIP: Asynchronous Timer1 Write in Progress bit 1 = Write to the timer in Asynchronous mode is pending 0 = Write to the timer in Asynchronous mode is complete bit 10 **PRWIP:** Asynchronous Period Write in Progress bit 1 = Write to the Period register in Asynchronous mode is pending 0 = Write to the Period register in Asynchronous mode is complete bit 9-8 **TECS<1:0>:** Timer1 Extended Clock Select bits 11 = FRC clock 10 = Fosc 01 = Tcy 00 = External Clock comes from the T1CK pin bit 7 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 6 Unimplemented: Read as '0' **Note 1:** When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored. #### REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER | R/W-0 |--------|-------|-------|-------|-------|-------|-------|-------| | G2D4T | G2D4N | G2D3T | G2D3N | G2D2T | G2D2N | G2D1T | G2D1N | | bit 15 | | | | | | | bit 8 | | R/W-0 |-------|-------|-------|-------|-------|-------|-------|-------| | G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N | | bit 7 | | | | | | | bit 0 | | Legend: | | | | |-------------------|------------------|-----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | d as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | bit 15 | G2D4T: Gate 2 Data Source 4 True Enable bit | |--------|----------------------------------------------------------| | | 1 = Data Source 4 signal is enabled for Gate 2 | | | 0 = Data Source 4 signal is disabled for Gate 2 | | bit 14 | G2D4N: Gate 2 Data Source 4 Negated Enable bit | | | 1 = Data Source 4 inverted signal is enabled for Gate 2 | | | 0 = Data Source 4 inverted signal is disabled for Gate 2 | | bit 13 | G2D3T: Gate 2 Data Source 3 True Enable bit | | | 1 = Data Source 3 signal is enabled for Gate 2 | | | 0 = Data Source 3 signal is disabled for Gate 2 | | bit 12 | G2D3N: Gate 2 Data Source 3 Negated Enable bit | | | 1 = Data Source 3 inverted signal is enabled for Gate 2 | | | 0 = Data Source 3 inverted signal is disabled for Gate 2 | | bit 11 | G2D2T: Gate 2 Data Source 2 True Enable bit | | | 1 = Data Source 2 signal is enabled for Gate 2 | | | 0 = Data Source 2 signal is disabled for Gate 2 | | bit 10 | G2D2N: Gate 2 Data Source 2 Negated Enable bit | | | 1 = Data Source 2 inverted signal is enabled for Gate 2 | | | 0 = Data Source 2 inverted signal is disabled for Gate 2 | | bit 9 | G2D1T: Gate 2 Data Source 1 True Enable bit | | | 1 = Data Source 1 signal is enabled for Gate 2 | | | 0 = Data Source 1 signal is disabled for Gate 2 | | bit 8 | G2D1N: Gate 2 Data Source 1 Negated Enable bit | | | 1 = Data Source 1 inverted signal is enabled for Gate 2 | | | 0 = Data Source 1 inverted signal is disabled for Gate 2 | | bit 7 | G1D4T: Gate 1 Data Source 4 True Enable bit | | | 1 = Data Source 4 signal is enabled for Gate 1 | | | 0 = Data Source 4 signal is disabled for Gate 1 | | bit 6 | G1D4N: Gate 1 Data Source 4 Negated Enable bit | | | 1 = Data Source 4 inverted signal is enabled for Gate 1 | | | 0 = Data Source 4 inverted signal is disabled for Gate 1 | | bit 5 | G1D3T: Gate 1 Data Source 3 True Enable bit | | | 1 = Data Source 3 signal is enabled for Gate 1 | | | 0 = Data Source 3 signal is disabled for Gate 1 | | bit 4 | G1D3N: Gate 1 Data Source 3 Negated Enable bit | | | 1 = Data Source 3 inverted signal is enabled for Gate 1 | | | 0 = Data Source 3 inverted signal is disabled for Gate 1 | #### **REGISTER 30-6: FWDT CONFIGURATION REGISTER** | U-1 |--------|-----|-----|-----|-----|-----|-----|--------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 23 | | | | | | | bit 16 | | R/PO-1 |--------|---------|---------|---------|---------|---------|---------|---------| | FWDTEN | SWDTPS4 | SWDTPS3 | SWDTPS2 | SWDTPS1 | SWDTPS0 | WDTWIN1 | WDTWIN0 | | bit 15 | | | | | | | bit 8 | | R/PO-1 |--------|----------|----------|---------|---------|---------|---------|---------| | WINDIS | RCLKSEL1 | RCLKSEL0 | RWDTPS4 | RWDTPS3 | RWDTPS2 | RWDTPS1 | RWDTPS0 | | bit 7 | | | | | | | bit 0 | **Legend:** PO = Program Once bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 23-16 Unimplemented: Read as '1' bit 15 FWDTEN: Watchdog Timer Enable bit 1 = WDT is enabled in hardware 0 = WDT controller via the ON bit (WDTCONL<15>) bit 14-10 **SWDTPS<4:0>:** Sleep Mode Watchdog Timer Period Select bits 11111 = Divide by 2 ^ 30 = 1,073,741,824 11110 = Divide by 2 ^ 29 = 526,870,912 . . . 00001 = Divide by 2 ^ 2, 4 00000 = Divide by 2 ^ 1, 2 bit 9-8 WDTWIN<1:0>: Watchdog Timer Window Select bits 11 = WDT window is 25% of the WDT period 10 = WDT window is 37.5% of the WDT period 01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period bit 7 WINDIS: Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode bit 6-5 RCLKSEL<1:0>: Watchdog Timer Clock Select bits 11 = LPRC clock 10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep; otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep; otherwise, uses INTOSC/LPRC 00 = Reserved bit 4-0 RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits $11111 = Divide by 2 ^ 30 = 1,073,741,824$ 11110 = Divide by 2 ^ 29 = 526,870,912 . . . 00001 = Divide by 2 ^ 2, 4 00000 = Divide by 2 ^ 1, 2 TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycles ⁽¹⁾ | Status Flags
Affected | |--------------------|----------------------|---------|-----------------|---|---------------|-------------------------------|--------------------------| | 20 | CLRWDT | CLRWDT | | Clear Watchdog Timer | 1 | 1 | WDTO,Sleep | | 21 | COM | COM | f | $f = \overline{f}$ | 1 | 1 | N,Z | | | | COM | f,WREG | WREG = f | 1 | 1 | N,Z | | | | COM | Ws,Wd | Wd = Ws | 1 | 1 | N,Z | | 22 | CP | CP | f | Compare f with WREG | 1 | 1 | C,DC,N,OV,Z | | | | CP | Wb,#lit8 | Compare Wb with lit8 | 1 | 1 | C,DC,N,OV,Z | | | | CP | Wb,Ws | Compare Wb with Ws (Wb – Ws) | 1 | 1 | C,DC,N,OV,Z | | 23 | CP0 | CP0 | f | Compare f with 0x0000 | 1 | 1 | C,DC,N,OV,Z | | | | CP0 | Ws | Compare Ws with 0x0000 | 1 | 1 | C,DC,N,OV,Z | | 24 | CPB | CPB | f | Compare f with WREG, with Borrow | 1 | 1 | C,DC,N,OV,Z | | | | CPB | Wb,#lit8 | Compare Wb with lit8, with Borrow | 1 | 1 | C,DC,N,OV,Z | | | | CPB | Wb,Ws | Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C}) | 1 | 1 | C,DC,N,OV,Z | | 25 | CPSEQ | CPSEQ | Wb,Wn | Compare Wb with Wn, Skip if = | 1 | 1
(2 or 3) | None | | | CPBEQ | CPBEQ | Wb,Wn,Expr | Compare Wb with Wn, Branch if = | 1 | 1 (5) | None | | 26 | CPSGT | CPSGT | Wb,Wn | Compare Wb with Wn, Skip if > | 1 | 1
(2 or 3) | None | | | CPBGT | CPBGT | Wb,Wn,Expr | Compare Wb with Wn, Branch if > | 1 | 1 (5) | None | | 27 | CPSLT | CPSLT | Wb,Wn | Compare Wb with Wn, Skip if < | 1 | 1
(2 or 3) | None | | | | CPBLT | Wb,Wn,Expr | Compare Wb with Wn, Branch if < | 1 | 1 (5) | None | | 28 | CPSNE | CPSNE | Wb,Wn | Compare Wb with Wn, Skip if ≠ | 1 | 1
(2 or 3) | None | | | | CPBNE | Wb,Wn,Expr | Compare Wb with Wn, Branch if ≠ | 1 | 1 (5) | None | | 29 | CTXTSWP | CTXTSWP | #1it3 | Switch CPU Register Context to Context
Defined by lit3 | 1 | 2 | None | | 30 | CTXTSWP | CTXTSWP | Wn | Switch CPU Register Context to Context Defined by Wn | 1 | 2 | None | | 31 | DAW.B | DAW.B | Wn | Wn = Decimal Adjust Wn | 1 | 1 | С | | 32 | DEC | DEC | f | f = f - 1 | 1 | 1 | C,DC,N,OV,Z | | | | DEC | f,WREG | WREG = f – 1 | 1 | 1 | C,DC,N,OV,Z | | | | DEC | Ws,Wd | Wd = Ws - 1 | 1 | 1 | C,DC,N,OV,Z | | 33 | DEC2 | DEC2 | f | f = f - 2 | 1 | 1 | C,DC,N,OV,Z | | | | DEC2 | f,WREG | WREG = f - 2 | 1 | 1 | C,DC,N,OV,Z | | | | DEC2 | Ws,Wd | Wd = Ws - 2 | 1 | 1 | C,DC,N,OV,Z | | 34 | DISI | DISI | #lit14 | Disable Interrupts for k Instruction Cycles | 1 | 1 | None | | 35 | DIVF | DIVF | Wm,Wn | Signed 16/16-bit Fractional Divide | 1 | 18 | N,Z,C,OV | | 36 | DIV.S ⁽²⁾ | DIV.S | Wm,Wn | Signed 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.SD | Wm,Wn | Signed 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | 37 | DIV.U(2) | DIV.U | Wm,Wn | Unsigned 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.UD | Wm,Wn | Unsigned 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | 38 | DIVF2(2) | DIVF2 | Wm,Wn | Signed 16/16-bit Fractional Divide (W1:W0 preserved) | 1 | 6 | N,Z,C,OV | | 39 | DIV2.S(2) | DIV2.S | Wm,Wn | Signed 16/16-bit Integer Divide (W1:W0 preserved) | 1 | 6 | N,Z,C,OV | | | | DIV2.SD | Wm,Wn | Signed 32/16-bit Integer Divide (W1:W0 preserved) | 1 | 6 | N,Z,C,OV | | 40 | DIV2.U(2) | DIV2.U | Wm,Wn | Unsigned 16/16-bit Integer Divide (W1:W0 preserved) | 1 | 6 | N,Z,C,OV | | | | DIV2.UD | Wm,Wn | Unsigned 32/16-bit Integer Divide (W1:W0 preserved) | 1 | 6 | N,Z,C,OV | | 1 | | | | · · · · · · · · · · · · · · · · · · · | | | 1 | | 41 | DO | DO | #lit15,Expr | Do Code to PC + Expr, lit15 + 1 Times | 2 | 2 | None | Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. ^{2:} The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times. TABLE 33-27: SPIX MAXIMUM DATA/CLOCK RATE SUMMARY | SPI Master
Transmit Only (Half-
Duplex) | SPI Master
Transmit/Receive
(Full-Duplex) | SPI Slave
Transmit/Receive
(Full-Duplex) | CKE | |---|---|--|-----| | Figure 33-7
Table 33-28 | _ | _ | 0 | | Figure 33-8
Table 33-28 | _ | _ | 1 | | _ | Figure 33-9
Table 33-29 | _ | 0 | | _ | Figure 33-10
Table 33-30 | _ | 1 | | _ | _ | Figure 33-11
Table 33-32 | 0 | | _ | _ | Figure 33-12
Table 33-33 | 1 | FIGURE 33-7: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS FIGURE 33-8: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS #### TABLE 33-28: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial -40° C \leq TA \leq +125 $^{\circ}$ C for Extended | Param
No. | Symbol | Characteristic ⁽¹⁾ | Min. | Typ. ⁽²⁾ | Max. | Units | Conditions | |--------------|-----------------------|--|------|---------------------|------|-------|---------------------| | SP10 | FscP | Maximum SCKx Frequency | _ | _ | 15 | MHz | Using PPS pins | | | | | _ | _ | 40 | MHz | SPIx dedicated pins | | SP20 | TscF | SCKx Output Fall Time | _ | _ | _ | ns | See Parameter DO32 | | SP21 | TscR | SCKx Output Rise Time | _ | _ | _ | ns | See Parameter DO31 | | SP30 | TdoF | SDOx Data Output Fall Time | _ | _ | _ | ns | See Parameter DO32 | | SP31 | TdoR | SDOx Data Output Rise Time | _ | _ | _ | ns | See Parameter DO31 | | SP35 | TscH2doV,
TscL2doV | SDOx Data Output Valid After SCKx Edge | _ | 6 | 20 | ns | | | SP36 | TdiV2scH, | V2scH, SDOx Data Output Setup to | 30 | _ | _ | ns | Using PPS pins | | | TdiV2scL | First SCKx Edge | 3 | _ | _ | ns | SPIx dedicated pins | Note 1: These parameters are characterized but not tested in manufacturing. 2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. | G | | Interrupt Controller | | |---|--------------------------|---|--------------------------| | Getting Started Guidelines | 23 | Alternate Interrupt Vector Table (AIVT) | | | Connection Requirements | | Control and Status Registers | 105 | | Decoupling Capacitors | | INTCON1 | | | External Oscillator Pins | | INTCON2 | 105 | | ICSP Pins | | INTCON3 | 105 | | Master Clear (MCLR) Pin | | INTCON4 | 105 | | Oscillator Value Conditions on Start-up | | INTTREG | 105 | | Targeted Applications | | Interrupt Vector Details | 98 | | Unused I/Os | | Interrupt Vector Table (IVT) | 95 | | Unused I/Os | 20 | Reset Sequence | | | H | | Resources | | | High-Resolution PWM (HSPWM) with | | Interrupt Vector Table | 96 | | Fine Edge Placement | 257 | Interrupts Coincident with Power Save Instructions | | | High-Speed Analog Comparator with | 231 | | | | Slope Compensation DAC | 310 | J | | | High-Speed, 12-Bit Analog-to-Digital | 319 | JTAG Boundary Scan Interface | 505 | | Converter (ADC) | 201 | JTAG Interface | 529 | | | | | | | Control Registers | | L | | | Features Overview | | Low-Power Sleep Modes (table) | 494 | | Resources | 293 | | | | HSPWM | 050 | M | | | Architecture | | Memory Organization | 39 | | Control Registers | 259 | Resources | | | I | | Microchip Internet Web Site | 615 | | | | Modulo Addressing | | | I/O Ports | | Applicability | | | Configuring Analog/Digital Port Pins | | Operation Example | | | Control Registers | | Start and End Address | | | Helpful Tips | | W Address Register Selection | | | Parallel I/O (PIO) | | MPLAB REAL ICE In-Circuit Emulator System | | | Resources | | MPLAB X Integrated Development | | | Write/Read Timing | 118 | Environment Software | 541 | | I ² C | | MPLINK Object Linker/MPLIB Object Librarian | | | Clock Rates | 393 | Wil Elivit Object Elilikei/Wil Elb Object Elbraham | 572 | | Communicating as Master in Single | | 0 | | | Master Environment | 391 | Operational Amplifier | 481 | | Control Registers | 395 | Control Registers | | | Reserved Addresses | 394 | Oscillator | | | Setting Baud Rate as Bus Master | 393 | Configuration | 188 | | Slave Address Masking | 393 | Control Registers | | | ICSP Write Inhibit | 80 | CPU Clocking | | | Activation | 80 | Internal Fast RC (FRC) | | | In-Circuit Debugger | 529 | Low-Power RC (LPRC) | | | MPLAB ICD 3 | 543 | Primary (POSC) | | | PICkit 3 Programmer | | | | | In-Circuit Emulation | | Oscillator with High-Frequency PLL | 179 | | In-Circuit Serial Programming (ICSP) | 505. 529 | Р | | | Input Change Notification (ICN) | | Dooksaina | E01 | | Instruction Addressing Modes | | Packaging | | | File Register Instructions | | Details | | | Fundamental Modes Supported | | Marking | | | MAC Instructions | | Parallel Master Port (PMP) | | | MCU Instructions | | Peripheral Module Disable (PMD) | | | Move and Accumulator Instructions | | Peripheral Pin Select (PPS) | | | | | Available Peripherals | | | Other InstructionsInstruction Set Summary | / U | Available Pins | | | | 521 | | 400 | | Overview | | Control | | | Symbols Used in Opcode Descriptions | 534 | Control Registers | 141 | | Instruction Deced Dower Coulon Made | 534
532 | Control RegistersInput Mapping | 141
126 | | Instruction-Based Power-Saving Modes | 534
532
493 | Control Registers Input Mapping Output Mapping | 141
126
131 | | Idle | 534
532
493
494 | Control RegistersInput Mapping | 141
126
131 | | IdleSleep | 534
532
493
494 | Control Registers Input Mapping Output Mapping | 141
126
131
134 | | Idle | 534
532
493
494 | Control Registers Input Mapping Output Mapping Output Selection for Remappable Pins | 141
126
131
134 | **NOTES:** © 2017-2018 Microchip Technology Inc.