

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Dectano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 20x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ck64mp506t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CAN			C1TSCONL	5D4	0000000000	C1RXOVIFH	5EA	000000000000000000000000000000000000000
C1CONL	5C0	00011101100000	C1TSCONH	5D6	000	C1TXATIFL	5EC	000000000000000000000000000000000000000
C1CONH	5C2	0000010010011000	C1VECL	5D8	00000-1000000	C1TXATIFH	5EE	000000000000000000000000000000000000000
C1NBTCFGL	5C4	00001111-0001111	C1VECH	5DA	11000000-1000000	C1TXREQL	5F0	000000000000000000000000000000000000000
C1NBTCFGH	5C6	000000000111110	C1INTL	5DC	000000000000	C1TXREQH	5F2	000000000000000000000000000000000000000
C1DBTCFGL	5C8	00110011	C1INTH	5DE	000000000000	C1TRECL	5F4	000000000000000000000000000000000000000
C1DBTCFGH	5CA	000000001110	C1RXIFL	5E0	000000000000000000	C1TRECH	5F6	100000
C1TDCL	5CC	00010000000000	C1RXIFH	5E2	000000000000000000	C1BDIAG0L	5F8	000000000000000000000000000000000000000
C1TDCH	5CE	10	C1TXIFL	5E4	0000000000000000-	C1BDIAG0H	5FA	000000000000000000000000000000000000000
C1TBCL	5D0	000000000000000000	C1TXIFH	5E6	000000000000000000	C1BDIAG1L	5FC	000000000000000000000000000000000000000
C1TBCH	5D2	000000000000000000000000000000000000000	C1RXOVIFL	5E8	0000000000000000-	C1BDIAG1H	5FE	00000-000-000000

TABLE 4-7: SFR BLOCK 500h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CAN (Continue	d)		C1FIFOSTA6	65C	000000000000000000000000000000000000	C1FLTOBJ6L	6B0	000000000000000000000000000000000000000
C1TEFCONL	600	1-00000	C1FIFOUA6L	660	*****	C1FLTOBJ6H	6B2	000000000000000000000000000000000000000
C1TEFCONH	602	00000	C1FIFOUA6H	662	*****	C1MASK6L	6B4	000000000000000000000000000000000000000
C1TEFSTA	604	0000	C1FIFOCON7L	664	100x000000	C1MASK6H	6B6	000000000000000000000000000000000000000
C1TEFUAL	608	*****	C1FIFOCON7H	666	0000000-1100000	C1FLTOBJ7L	7B8	000000000000000000000000000000000000000
C1TEFUAH	60A	*****	C1FIFOSTA7	668	00000000000000000	C1FLTOBJ7H	6BA	000000000000000000000000000000000000000
C1FIFOBAL	60C	000000000000000000000000000000000000000	C1FIFOUA7L	66C	*****	C1MASK7L	6BC	000000000000000000000000000000000000000
C1FIFOBAH	60E	000000000000000000000000000000000000000	C1FIFOUA7H	66E	*****	C1MASK7H	6BE	000000000000000000000000000000000000000
C1TXQCONL	610	100x000000	C1FLTCON0L	670	00000000000	C1FLTOBJ8L	6C0	000000000000000000000000000000000000000
C1TXQCONH	612	0000000-1100000	C1FLTCON0H	672	00000000000	C1FLTOBJ8H	6C2	000000000000000000000000000000000000000
C1TXQSTA	614	00000000-0-0	C1FLTCON1L	674	00000000000	C1MASK8L	6C4	000000000000000000000000000000000000000
C1TXQUAL	618	*****	C1FLTCON1H	676	00000000000	C1MASK8H	6C6	000000000000000000000000000000000000000
C1TXQUAH	61A	*****	C1FLTCON2L	678	00000000000	C1FLTOBJ9L	6C8	000000000000000000000000000000000000000
C1FIFOCON1L	61C	100x000000	C1FLTCON2H	67A	00000000000	C1FLTOBJ9H	6CA	000000000000000000000000000000000000000
C1FIFOCON1H	61E	0000000-1100000	C1FLTCON3L	67C	00000000000	C1MASK9L	6CC	000000000000000000000000000000000000000
C1FIFOSTA1	620	0000000000000000	C1FLTCON3H	67E	00000000000	C1MASK9H	6CE	000000000000000000000000000000000000000
C1FIFOUA1L	624	*****	C1FLTOBJ0L	680	000000000000000000000000000000000000000	C1FLTOBJ10L	6D0	000000000000000000000000000000000000000
C1FIFOUA1H	626	*****	C1FLTOBJ0H	682	000000000000000000000000000000000000000	C1FLTOBJ10H	6D2	000000000000000000000000000000000000000
C1FIFOCON2L	628	100x000000	C1MASK0L	684	000000000000000000000000000000000000000	C1MASK10L	6D4	000000000000000000000000000000000000000
C1FIFOCON2H	62A	0000000-1100000	C1MASK0H	686	000000000000000000000000000000000000000	C1MASK10H	6D6	000000000000000000000000000000000000000
C1FIFOSTA2	62C	0000000000000000	C1FLTOBJ1L	688	000000000000000000000000000000000000000	C1FLTOBJ11L	6D8	000000000000000000000000000000000000000
C1FIFOUA2L	630	*****	C1FLTOBJ1H	68A	000000000000000000000000000000000000000	C1FLTOBJ11H	6DA	000000000000000000000000000000000000000
C1FIFOUA2H	632	*****	C1MASK1L	68C	000000000000000000000000000000000000000	C1MASK11L	6DC	000000000000000000000000000000000000000
C1FIFOCON3L	634	100x000000	C1MASK1H	68E	000000000000000000000000000000000000000	C1MASK11H	6DE	000000000000000000000000000000000000000
C1FIFOCON3H	636	0000000-1100000	C1FLTOBJ2L	690	000000000000000000000000000000000000000	C1FLTOBJ12L	6E0	000000000000000000000000000000000000000
C1FIFOSTA3	638	0000000000000000	C1FLTOBJ2H	692	000000000000000000000000000000000000000	C1FLTOBJ12H	6E2	000000000000000000000000000000000000000
C1FIFOUA3L	63C	*****	C1MASK2L	694	000000000000000000000000000000000000000	C1MASK12L	6E4	000000000000000000000000000000000000000
C1FIFOUA3H	63E	*****	C1MASK2H	696	000000000000000000000000000000000000000	C1MASK12H	6E6	000000000000000000000000000000000000000
C1FIFOCON4L	640	100x000000	C1FLTOBJ3L	698	000000000000000000000000000000000000000	C1FLTOBJ13L	6E8	000000000000000000000000000000000000000
C1FIFOCON4H	642	0000000-1100000	C1FLTOBJ3H	69A	000000000000000000000000000000000000000	C1FLTOBJ13H	6EA	000000000000000000000000000000000000000
C1FIFOSTA4	644	000000000000000	C1MASK3L	69C	000000000000000000000000000000000000000	C1MASK13L	6EC	000000000000000000000000000000000000000
C1FIFOUA4L	648	*****	C1MASK3H	69C	000000000000000000000000000000000000000	C1MASK13H	6EE	000000000000000000000000000000000000000
C1FIFOUA4H	64A	*****	C1FLTOBJ4L	6A0	000000000000000000000000000000000000000	C1FLTOBJ14L	6F0	000000000000000000000000000000000000000
C1FIFOCON5L	64C	100x000000	C1FLTOBJ4H	6A2	000000000000000000000000000000000000000	C1FLTOBJ14H	6F2	000000000000000000000000000000000000000
C1FIFOCON5H	64E	0000000-1100000	C1MASK4L	6A4	000000000000000000000000000000000000000	C1MASK14L	6F4	000000000000000000000000000000000000000
C1FIFOSTA5	650	0000000000000000	C1MASK4H	6A6	000000000000000000000000000000000000000	C1MASK14H	6F6	000000000000000000000000000000000000000
C1FIFOUA5L	654	*****	C1FLTOBJ5L	6A8	000000000000000000000000000000000000000	C1FLTOBJ15L	6F8	000000000000000000000000000000000000000
C1FIFOUA5H	656	*****	C1FLTOBJ5H	6AA	000000000000000000000000000000000000000	C1FLTOBJ15H	6FA	000000000000000000000000000000000000000
C1FIFOCON6L	658	100x000000	C1MASK5L	6AC	000000000000000000000000000000000000000	C1MASK15L	6FC	000000000000000000000000000000000000000
C1FIFOCON6H	65A	0000000-1100000	C1MASK5H	6AE	000000000000000000000000000000000000000	C1MASK15H	6FE	000000000000000000000000000000000000000

TABLE 4-8:SFR BLOCK 600h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

5.0 FLASH PROGRAM MEMORY

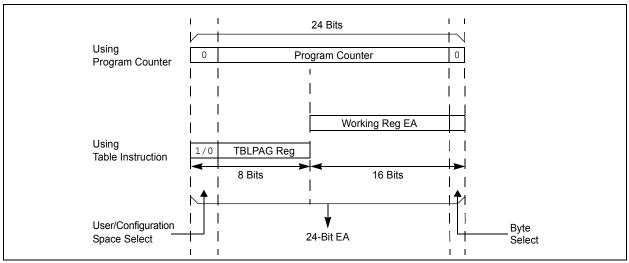
- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Partition Flash Program Memory" (DS70005156) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - **2:** Some registers and associated bits described in this section may not be available on all devices.

The dsPIC33CK256MP508 family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33CK256MP508 family device to be serially programmed while in the end application circuit. This is done with a Programming Clock and Programming Data (PGCx/PGDx) line, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data with a single program memory word and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

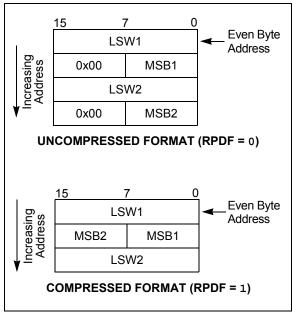
5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33CK256MP508 family Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a single page (8 rows or 1024 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.


The page erase and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively. Table 33-18 in **Section 33.0 "Electrical Characteristics"** lists the typical erase and programming times.

Row programming is performed by loading 384 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADRL/H register. Once the write has been initiated, the device will automatically load the write latches, and increment the NVMSRCADRL/H and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation. For example, when performing Flash write operations on the Inactive Partition in Dual Partition mode, where the CPU remains running, it is necessary to wait for the NVM interrupt before programming the next block of Flash program memory.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of Program Flash Memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

8.0 I/O PORTS

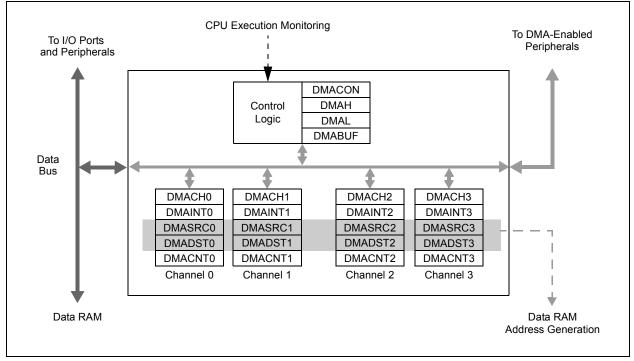
- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The PORT registers are located in the SFR.

Some of the key features of the I/O ports are:

- · Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- Operation during Sleep and Idle modes

8.1 Parallel I/O (PIO) Ports


All port pins have 12 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 8-1 shows the pin availability. Table 8-2 shows the 5V input tolerant pins across this device.

dsPIC33CK256MP508 FAMILY

FIGURE 10-1: DMA FUNCTIONAL BLOCK DIAGRAM

10.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- · Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

10.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 0FFFh) or the data RAM space (1000h to 4FFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 10-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

10.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSB of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

10.1.3 TRIGGER SOURCE

The DMA Controller can use 82 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order from their natural interrupt priority and are shown in Table 10-1. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

10.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction.

10.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

REGISTER 11-5: C1DBTCFGH: CAN DATA BIT TIME CONFIGURATION REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1000-0	10,00-0	10.00-0	BRP<		1000-0	1000-0	1000-0
			DRPS	-7.0-			
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
_	_	_			TSEG1<4:0>		-
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable bi	t	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
<u></u>							
bit 15-8	BRP<7:0>: E	Baud Rate Presca	aler bits				
	1111 1111	= TQ = 256/Fsys					
	0000 0000	= TQ = 1/Fsys					
bit 7-5	Unimplemer	ted: Read as '0'					
bit 4-0	TSEG1<4:0>	: Time Segment	1 bits (Propa	gation Segmei	nt + Phase Seg	ment 1)	
	1 1111 = Le	ngth is 32 x To					
		•					
	0 0000 = Le	ngth is 1 x TQ					

Note 1: This register can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 11-6: C1DBTCFGL: CAN DATA BIT TIME CONFIGURATION REGISTER LOW⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
_	_	_			TSEG	2<3:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
_	-	-	_		-	<3:0>	
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable bit	t	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15-12	Unimplemen	ted: Read as '0'					
bit 11-8	TSEG2<3:0>	: Time Segment	2 bits (Phas	se Segment 2)			
	1111 = Leng	•					
	0000 = Leng	th is 1 x TQ					
bit 7-4	0	th is 1 x TQ Ited: Read as '0'					

1111 = Length is 16 x To

0000 = Length is 1 x TQ

Note 1: This register can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 11-34: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7) (CONTINUED)

bit 2	TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Empty Interrupt Flag
	1 = FIFO is empty
	0 = FIFO is not empty, at least 1 message is queued to be transmitted
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Full Interrupt Flag
	1 = FIFO is full
	0 = FIFO is not full
bit 1	TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Half Empty Interrupt Flag
	1 = FIFO is ≤ half full
	0 = FIFO is > half full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Half Full Interrupt Flag 1 = FIFO is > half full
	0 = FIFO is < half full
bit 0	
	TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit
	<u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Not Full Interrupt Flag
	1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Not Empty Interrupt Flag
	1 = FIFO is not empty, has at least 1 message
	0 = FIFO is empty
Noto 1:	EIEOCICION gives a zero indexed value to the message in the EIEO. If the EIEO is 4 messages

- Note 1: FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE<4:0> = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.
 - 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

REGISTER 11-46: C1BDIAG0H: CAN BUS DIAGNOSTICS REGISTER 0 HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTERF	RCNT<7:0>			
bit 15							bit 8
DAMA	D 444 0	D 444 0	D # 4 / 0		D (14) 0	D #44 0	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DRERF	RCNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unki	nown

bit 15-8	DTERRCNT<7:0>: Data Bit Rate Transmit Error Counter bits

bit 7-0 DRERRCNT<7:0>: Data Bit Rate Receive Error Counter bits

REGISTER 11-47: C1BDIAG0L: CAN BUS DIAGNOSTICS REGISTER 0 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NTERF	RCNT<7:0>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NRERF	RCNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 NTERRCNT<7:0>: Nominal Bit Rate Transmit Error Counter bits

bit 7-0 NRERRCNT<7:0>: Nominal Bit Rate Receive Error Counter bits

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CLMOD	SWAP	OVRENH	OVRENL	OVRDAT1	OVRDAT0	OSYNC1	OSYNC0		
bit 15	•	·				•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	FFDAT1	FFDAT0	DBDAT1	DBDAT0		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable I	bit	U = Unimplem	nented bit, read a	s '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own		
L:4 4 F		vent Linsit Med	e Celesthit						
bit 15		rent-Limit Mod			WMxL output sig	nala ara invarta	d (bit flipping)		
		CLDAT<1:0> b				nais are inverte	u (bit ilippilig),		
	0 = If PCI cu	rrent limit is ac	tive, then the (CLDAT<1:0> bit	s define the PWN	/I output levels			
bit 14	SWAP: Swap	PWM Signals	to PWMxH ar	nd PWMxL Devi	ice Pins bit				
		•		OWMxL pin and r respective pin	the PWMxL signal s	is connected to t	he PWMxH pin		
bit 13	OVRENH: Us	er Override Er	hable for PWN	IxH Pin bit					
				n the PWMxH p	in				
		enerator provid		•					
bit 12	OVRENL: User Override Enable for PWMxL Pin bit 1 = OVRDAT0 provides data for output on the PWMxL pin								
		0 provides dat enerator provid			n				
bit 11-10	OVRDAT<1:0)>: Data for PV	VMxH/PWMxL	Pins if Overrid	e is Enabled bits				
				s data for PWM s data for PWM					
bit 9-8	OSYNC<1:0>	: User Output	Override Synd	chronization Co	ntrol bits				
	11 = Reserve								
					RDAT<1:0> bits	occur when sp	ecified by the		
		D<2:0> bits in			RDAT<1:0> bits o	ccur immediate	lv (as soon as		
	possible	•							
	00 = User ou								
	time bas	tput overrides v se (next Start-c		IH/L and OVRD	AT<1:0> bits are s	synchronized to	the local PWM		
bit 7-6		se (next Start-c	of-Cycle)		AT<1:0> bits are s ent is Active bits	synchronized to	the local PWM		
bit 7-6	FLTDAT<1:0 If Fault is acti	se (next Start-c >: Data for PW ve, then FLTD	of-Cycle) MxH/PWMxL AT1 provides o		ent is Active bits I.	synchronized to	the local PWM		
bit 7-6 bit 5-4	FLTDAT<1:0 If Fault is acti If Fault is acti	se (next Start-c >: Data for PW ve, then FLTD, ve, then FLTD,	f-Cycle) MxH/PWMxL AT1 provides o AT0 provides o	Pins if Fault Ev lata for PWMxH lata for PWMxL	ent is Active bits I.		the local PWM		
	FLTDAT<1:0 If Fault is acti If Fault is acti CLDAT<1:0> If current limit	se (next Start-c >: Data for PW ve, then FLTD, ve, then FLTD, : Data for PWM : is active, then	f-Cycle) MxH/PWMxL AT1 provides o AT0 provides o MxH/PWMxL F CLDAT1 prov	Pins if Fault Ev lata for PWMxH lata for PWMxL	ent is Active bits I. imit Event is Activ WMxH.		the local PWM		
bit 5-4	FLTDAT<1:0 If Fault is acti If Fault is acti CLDAT<1:0> If current limit If current limit	se (next Start-c >: Data for PW ve, then FLTD, ve, then FLTD, : Data for PWN : is active, then : is active, then	f-Cycle) MxH/PWMxL AT1 provides o AT0 provides o MxH/PWMxL F CLDAT1 prov CLDAT0 prov	Pins if Fault Ev lata for PWMxH lata for PWMxL Pins if Current-L rides data for P rides data for P	ent is Active bits I. imit Event is Activ WMxH.	ve bits	the local PWM		
bit 5-4	FLTDAT<1:03 If Fault is acti If Fault is acti CLDAT<1:0> If current limit If current limit FFDAT<1:0> If feed-forwar	se (next Start-c >: Data for PW ve, then FLTD, ve, then FLTD, : Data for PWN : is active, then : Data for PWN d is active, the	of-Cycle) MxH/PWMxL AT1 provides of AT0 provides of MxH/PWMxL F CLDAT1 prov CLDAT0 prov MxH/PWMxL F n FFDAT1 pro	Pins if Fault Ev lata for PWMxH lata for PWMxL Pins if Current-L rides data for P rides data for P	ent is Active bits I. imit Event is Activ MMxH. MMxL. ward Event is Act WMxH.	ve bits	the local PWM		
	FLTDAT<1:03 If Fault is acti If Fault is acti CLDAT<1:0> If current limit If current limit FFDAT<1:0> If feed-forwar If feed-forwar	se (next Start-c >: Data for PW ve, then FLTD, ve, then FLTD, : Data for PWN : is active, then : active, then : Data for PWN d is active, the d is active, the	f-Cycle) MxH/PWMxL AT1 provides of AT0 provides of MxH/PWMxL F CLDAT1 prov CLDAT0 prov MxH/PWMxL F n FFDAT1 pro n FFDAT0 pro	Pins if Fault Ev lata for PWMxH data for PWMxL Pins if Current-L rides data for P rides data for P vides data for F vides data for F	ent is Active bits I. imit Event is Activ MMxH. MMxL. ward Event is Act WMxH.	ve bits	the local PWM		

REGISTER 12-15: PGxIOCONL: PWM GENERATOR x I/O CONTROL REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
bit 15	-				•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
bit 7					•	•	bit 0
Legend:							

REGISTER 13-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<1:0>: Differential-Mode for Corresponding Analog Inputs bits

- bit 1 (odd) 1 = Channel is differential
 - 0 = Channel is single-ended

bit 14 through **SIGN<1:0>:** Output Data Sign for Corresponding Analog Inputs bits

- bit 0 (even) 1 = Channel output data is signed
 - 0 = Channel output data is unsigned

REGISTER 13-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| DIFF15 | SIGN15 | DIFF14 | SIGN14 | DIFF13 | SIGN13 | DIFF12 | SIGN12 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<15:8>: Differential-Mode for Corresponding Analog Inputs bits

bit 1 (odd) 1 = Channel is differential

0 = Channel is single-ended

bit 14 through SIGN<15:8>: Output Data Sign for Corresponding Analog Inputs bits

- bit 0 (even) 1 = Channel output data is signed
 - 0 = Channel output data is unsigned

REGISTER 19-7: PMDIN1: PARALLEL MASTER PORT DATA INPUT/OUTPUT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	IN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	AIN<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **DATAIN<15:0>:** Input/Output Data Port bits These bits are for 8-bit or 16-bit read/write operations in Master mode and are the input data port for 8-bit write operations in Slave mode.

REGISTER 19-8: PMDIN2: PARALLEL MASTER PORT DATA INPUT/OUTPUT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 DATAIN<31:16>: Input/Output Data Port bits

These bits are for 8-bit write operations in Slave mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0				
bit 15							bit a				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0		PTGWDT2	PTGWDT1	PTGWDT0				
bit 7	1101102				1100012	TIONDIT	bit				
Legend:											
R = Readable		W = Writable		-	mented bit, read	d as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	PTGCI KZ2.0)>: PTG Modul	e Clock Source	a Selection bit	e						
DIC 15-15					.5						
	111 = CLC1 110 = PLL VCO DIV 4 output										
	110 = PLL VCO DIV 4 output 101 = PTG module clock source will be SCCP7										
	100 = PTG module clock source will be SCCP8										
	011 = Input from Timer1 Clock pin, T1CK										
	010 = PTG module clock source will be ADC clock										
	001 = PTG module clock source will be Fosc 000 = PTG module clock source will be Fosc/2 (FP)										
bit 12-8	PTGDIV<4:0>: PTG Module Clock Prescaler (Divider) bits										
	11111 = Divide-by-32 11110 = Divide-by-31										
		-									
	00001 = Divi 00000 = Divi	•									
bit 7-4		-	er Output Pulse	e-Width (in PT	G clock cycles)	bits					
	PTGPWD<3:0>: PTG Trigger Output Pulse-Width (in PTG clock cycles) bits 1111 = All trigger outputs are 16 PTG clock cycles wide										
	1110 = All trigger outputs are 15 PTG clock cycles wide										
	0001 = All trigger outputs are 2 PTG clock cycles wide										
	0000 = All trigger outputs are 1 PTG clock cycle wide										
bit 3	Unimplemented: Read as '0'										
bit 2-0	PTGWDT<2:	0>: PTG Watch	ndog Timer Tin	ne-out Selection	on bits						
	111 = Watch	dog Timer will t	ime out after 5	12 PTG clock	S						
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t dog Timer will t									
		dog Timer will t		T TO CIUCKS							

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE LOW REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unl	known

bit 15-0 **PTGBTE<15:0>:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 24-4: PTGBTEH: PTG BROADCAST TRIGGER ENABLE HIGH REGISTER⁽¹⁾

Legend: R = Readable b	it	W = Writable bit		U = Unimplen	nented bit, read	as '0'	
bit 7							bit 0
			PTGB	TE<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTGB	ΓE<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

bit 15-0 **PTGBTE<31:16>:** PTG Broadcast Trigger Enable bits

'1' = Bit is set

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

-n = Value at POR

x = Bit is unknown

30.7 JTAG Interface

The dsPIC33CK256MP508 family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface will be provided in future revisions of this document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information on
	usage, configuration and operation of the
	JTAG interface.

30.8 In-Circuit Serial Programming™ (ICSP™)

The dsPIC33CK256MP508 family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33CK256MP508 Family Flash Programming Specification" (DS70005300) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

30.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or the REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGCx (Emulation/Debug Clock) and PGDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

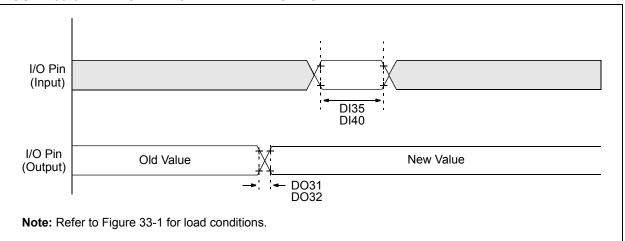
- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGCx/PGDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGCx and PGDx).

30.10 Code Protection and CodeGuard™ Security

dsPIC33CK256MP508 family devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data, which is located at the end of the program memory space.

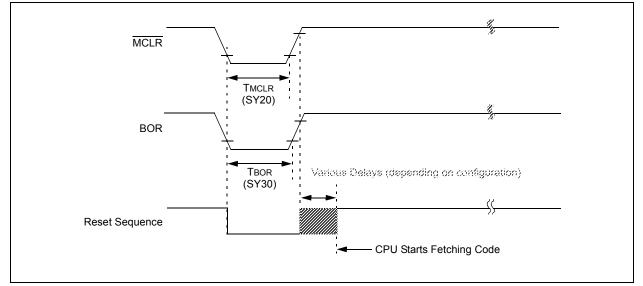
The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 1024 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 512 IW of code protection.


If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (2048 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash, except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
61	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
6	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.


TABLE 33-24: I/O TIMING REQUIREMENTS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
DO31	TIOR	Port Output Rise Time ⁽²⁾		6.5	9.7	ns				
DO32	TIOF	Port Output Fall Time ⁽²⁾	_	3.2	4.2	ns				
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns				
DI40	Trbp	CNx High or Low Time (input)	2	_	_	TCY				

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

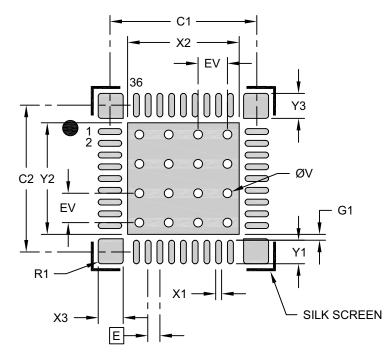

2: This parameter is characterized but not tested in manufacturing.

FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

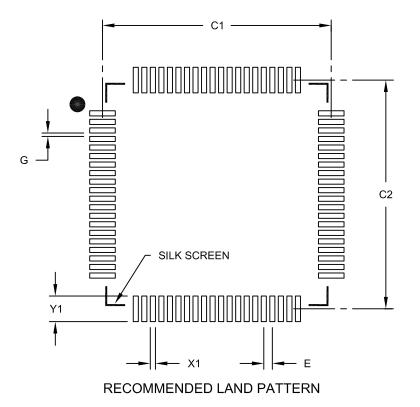
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	X2			3.80	
Optional Center Pad Length	Y2			3.80	
Contact Pad Spacing	C1		5.00		
Contact Pad Spacing	C2		5.00		
Contact Pad Width (X36)	X1			0.20	
Contact Pad Length (X36)	Y1			0.80	
Corner Pad Width (X4)	X3			0.20	
Corner Pad Length (X36)	Y3			0.85	
Corner Pad Radius	R1		0.10		
Contact Pad to Center Pad (X36)	G1	0.20			
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436A-M5

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X80)	X1			0.30	
Contact Pad Length (X80)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B