
Atmel - ATSAM4C16CB-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4/M4F

Core Size 32-Bit Dual-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 74

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atsam4c16cb-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4c16cb-au-4382926
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 7-3. SAM4C32 Memory Mapping of CODE and SRAM Area

Notes: 1. Boot Memory for Core 0.

2. Boot Memory for Core 1 at 0x00000000.

Code

 Boot Memory (1)
(Code - Non-cached)

0x00000000

 Internal Flash - Plane 1
(Code - Non-cached)

0x01100000

 Internal Flash - Plane 0
(Code - Non-cached)

0x01000000

Internal ROM

0x02000000

 EBI Chip Select 0
(Code - Non-cached)

 EBI Chip Select 0
 (Code - Cached)

 EBI Chip Select 1
 (Code - Cached)

 EBI Chip Select 2
 (Code - Cached)

 EBI Chip Select 3
 (Code - Cached)

 EBI Chip Select 1
(Code - Non-cached)

 EBI Chip Select 2
(Code - Non-cached)

 EBI Chip Select 3
(Code - Non-cached)

0x03000000

0x04000000

0x05000000

0x06000000

0x07000000

0x10000000

 Internal Flash
(Code - Cached)

0x11000000

0x12000000

0x13000000

0x14000000

0x15000000

0x16000000

0x17000000

0x1FFFFFFF

Internal SRAM

SRAM0

0x20000000

SRAM1 (2)

0x20080000

SRAM2

0x20100000

CPKCC ROM

0x20180000

Reserved

0x20190000

CPKCC SRAM

0x20191000

Reserved

0x20192000

Undefined (Abort)

0x20200000

0x3FFFFFFF

offset

ID
peripheral

block

Undefined (Abort)

Undefined (Abort)

Undefined (Abort)

Undefined (Abort)

Address memory space

Code

0x00000000

Internal SRAM

0x20000000

Peripherals

0x40000000

External SRAM

0x60000000

External devices

0xA0000000

 Cortex-M
Private Peripheral Bus

Reserved

0xE0000000

0xE0100000

0xFFFFFFFF
33SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

11.4.3 PIO Controller A Multiplexing

Table 11-5. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C
Extra

Function
System

Function Feature Reset State Comments

PA0 RTS3 PCK2 A10 COM0 WKUP5
- PUP(P) / PDN(P)

- ST(P)

- MaxDRV(NP)

PIO, I, PU

PA1 CTS3 NCS1 A9 COM1 –

- PUP(P) / PDN(P)

- ST(P)

- LDRV(P) / HDRV(P)

PA2 SCK3 NCS2 A8 COM2 –

PA3 RXD3 NCS3 A7 COM3 WKUP6

PA4 TXD3 – A6 COM4/AD1 –

PA5 SPI0_NPCS0 – A5 COM5/AD2 –

PA6 SPI0_MISO – A4 SEG0 –

PA7 SPI0_MOSI – A3 SEG1 –

PA8 SPI0_SPCK – A2 SEG2 –
- PUP(P) / PDN(P)

- ST(P)

- MaxDRV(NP)

PA9 RXD2 – A1 SEG3 WKUP2

- PUP(P) / PDN(P)

- ST(P)

- LDRV(P) / HDRV(P)

PA10 TXD2 – A0/NBS0 SEG4 –

PA11 RXD1 – A23 SEG5 WKUP9

PA12 TXD1 –
A22/

NANDCLE
SEG6/AD0 –

PA13 SCK2 TIOA0
A21/

NANDALE
SEG7 –

PA14 RTS2 TIOB0 A20 SEG8 WKUP3

PA15 CTS2 TIOA4 A19 SEG9 –

PA16 SCK1 TIOB4 A18 SEG10 –

PA17 RTS1 TCLK4 A17 SEG11 WKUP7

PA18 CTS1 TIOA5 A16 SEG12 –

PA19 RTS0 TCLK5 A15 SEG13 WKUP4

PA20 CTS0 TIOB5 A14 SEG14 –

PA21 SPI0_NPCS1 – A13 SEG15 –

PA22 SPI0_NPCS2 – A12 SEG16 –

PA23 SPI0_NPCS3 – A11 SEG17 –

PA24 TWD0 – A10 SEG18 WKUP1

PA25 TWCK0 – A9 SEG19 –

PA26 CTS4 – A8 SEG20 –

PA27 – – NCS0 SEG21 –

PA28 – – NRD SEG22 –
53SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

12.6.5.16 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

UADD16 Performs two 16-bit unsigned integer additions.

UADD8 Performs four 8-bit unsigned integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,

; writes to corresponding halfword of R1
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and

; writes to corresponding byte in R4.
139SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

12.6.11.11 VLDR

Loads a single extension register from memory

Syntax
VLDR{cond}{.64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{.64} Dd, [PC, #imm}]
VLDR{cond}{.32} Sd, [Rn {, #imm}]
VLDR{cond}{.32} Sd, label
VLDR{cond}{.32} Sd, [PC, #imm]

where:

cond is an optional condition code, see “Conditional Execution”.

64, 32 are the optional data size specifiers.

Dd is the destination register for a doubleword load.

Sd is the destination register for a singleword load.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address.
Permitted address values are multiples of 4 in the range 0 to 1020.

label is the label of the literal data item to be loaded.

Operation

This instruction:

 Loads a single extension register from memory, using a base address from an ARM core register, with an
optional offset.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

204

12.6.11.25 VPUSH

Floating-point extension register Push.

Syntax
VPUSH{cond}{.size} list

where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is a list of the extension registers to be stored, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and sur
rounded by brackets.

Operation

This instruction:

 Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:

 list must contain at least one register, and not more than sixteen.

Condition Flags

These instructions do not change the flags.
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

218

12.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission

See Table 12-39.

• TEX, C, B: Memory Access Attributes

See Table 12-37.

• S: Shareable

See Table 12-37.

• SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

31 30 29 28 27 26 25 24

– – – XN – AP

23 22 21 20 19 18 17 16

– – TEX S C B

15 14 13 12 11 10 9 8

SRD

7 6 5 4 3 2 1 0

– – SIZE ENABLE
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

288

Region A partition of memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.
311SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

15.4.3.4 Software Reset

The Reset Controller offers commands to assert the different reset signals. These commands are performed by
writing the Control Register (RSTC_CR) or Coprocessor Mode Register (RSTC_CPMR) with the following bits
at 1:

 RSTC_CR.PROCRST: Writing a 1 to PROCRST resets the processor and the watchdog timer.

 RSTC_CR.PERRST: Writing a 1 to PERRST resets all the embedded peripherals associated to processor
whereas the coprocessor peripherals are not reset, including the memory system, and, in particular, the
Remap Command. The Peripheral Reset is generally used for debug purposes.
Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

 RSTC_CPMR.CPROCEN: Writing a 0 to CPROCEN resets the coprocessor only.

 RSTC_CPMR.CPEREN: Writing a 0 to CPEREN resets all the embedded peripherals associated to
coprocessor whereas the processor peripherals are not reset.

 RSTC_CR.EXTRST: Writing a 1 to EXTRST asserts low the NRST pin during a time defined by the field
RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is written to 1 by the software. All these commands can be
performed independently or simultaneously. The software reset lasts three slow clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to 1, the nrst_out signal is asserted depending on the configuration of f ield
RSTC_MR.ERSTL. However, the resulting falling edge on NRST does not lead to a user reset.

If and only if the PROCRST bit is written to 1, the Reset Controller reports the software status in field
RSTC_SR.RSTTYP. Other software resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is written to
1 in the RSTC_SR. SRCMP is cleared at the end of the software reset. No other software reset can be performed
while the SRCMP bit is written to 1, and writing any value in the RSTC_CR has no effect.
331SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

19.5.2 Reinforced Safety Watchdog Timer Mode Register

Name: RSWDT_MR

Address: 0x400E1504

Access: Read-write Once

Notes: 1. The first write access prevents any further modification of the value of this register; read accesses remain possible.

2. The WDD and WDV values must not be modified within three slow clock periods following a restart of the watchdog
performed by means of a write access in the RSWDT_CR, else the watchdog may trigger an end of period earlier than
expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

• WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the RSWDT.

If the RSWDT value is less than or equal to WDD, writing RSWDT_CR with WDRSTT = 1 restarts the timer.

If the RSWDT value is greater than WDD, writing RSWDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt

0: The RSWDT runs when the processor is in debug state.

1: The RSWDT stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt

0: The RSWDT runs when the system is in Idle mode.

1: The RSWDT stops when the system is in idle state.

31 30 29 28 27 26 25 24

– – WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16

WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN – WDV

7 6 5 4 3 2 1 0
WDV
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

394

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:

1. Execute the ‘Get Lock Bit’ command by writing EEFC_FCR.FCMD with the GLB command. Field
EEFC_FCR.FARG is meaningless.

2. Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32
first lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to
EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit’, ‘Clear Lock Bit’ or ‘Get Lock Bit’ command is executed.

22.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. Refer to Section 8. ”Memories” for more
details.

The ‘Set GPNVM Bit’ sequence is the following:

1. Execute the ‘Set GPNVM Bit’ command by writing EEFC_FCR.FCMD with the SGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be set.

2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit’ (GGPB) command.

Note: The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM index
available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:

1. Execute the ‘Clear GPNVM Bit’ command by writing EEFC_FCR.FCMD with the CGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be cleared.

2. When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM index
available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

442

All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock
cycles. To ensure that the NWE and NCS timings are consistent, the user must define the total write cycle instead
of the hold timing. This implicitly defines the NWE hold time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE

NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

27.9.3.4 Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in
case of consecutive write cycles in the same memory (see Figure 27-12). However, for devices that perform write
operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed.

Figure 27-12. Null Setup and Hold Values of NCS and NWE in Write Cycle

27.9.3.5 Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.

27.9.4 Write Mode

The bit WRITE_MODE in the SMC_MODE register of the corresponding chip select indicates which signal controls
the write operation.

27.9.4.1 Write is Controlled by NWE (WRITE_MODE = 1):

Figure 27-13 shows the waveforms of a write operation with WRITE_MODE set . The data is put on the bus during
the pulse and hold steps of the NWE signal. The internal data buffers are switched to Output mode after the
NWE_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NCS.

NCS

MCK

NWE

D[7:0]

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

A[23:0]
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

516

27.13.4 NWAIT Latency and Read/Write Timings

There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT
signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to
this latency plus the 2 cycles of resynchronization + one cycle. Otherwise, the SMC may enter the hold state of the
access without detecting the NWAIT signal assertion. This is true in Frozen mode as well as in Ready mode. This
is illustrated on Figure 27-29.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read and write
controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + one cycle

Figure 27-29. NWAIT Latency

EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)

NRD_PULSE = 5

A[23:0]

MCK

NRD

4 3 2 1 0 00

Read cycle

minimal pulse length

NWAIT latency

NWAIT

intenally synchronized
NWAIT signal

WAIT STATE

2 cycle resynchronization
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

532

32.6.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Address: 0x400E0E24 (PIOA), 0x400E1024 (PIOB), 0x4800C024 (PIOC), 0x400E1224 (PIOD)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Input Filter Disable

0: No effect.

1: Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

648

Figure 35-2. Baud Rate Generator

35.5.2 Receiver

35.5.2.1 Receiver Reset, Enable and Disable

After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be
enabled by writing the Control Register (UART_CR) with the bit RXEN at 1. At this command, the receiver starts
looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for
a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the
data, it waits for the stop bit before actually stopping its operation.

The receiver can be put in reset state by writing UART_CR with the bit RSTRX at 1. In this case, the receiver
immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data
is being processed, this data is lost.

35.5.2.2 Start Detection and Data Sampling

The UART only supports asynchronous operations, and this affects only its receiver. The UART receiver detects
the start of a received character by sampling the URXD signal until it detects a valid start bit. A low level (space) on
URXD is interpreted as a valid start bit if it is detected for more than seven cycles of the sampling clock, which is
16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A
space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It
is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles
(0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after
detecting the falling edge of the start bit.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 35-3. Start Bit Detection

peripheral clock 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

770

37.7.11 TC Interrupt Disable Register

Name: TC_IDRx [x=0..2]

Address: 0x40010028 (0)[0], 0x40010068 (0)[1], 0x400100A8 (0)[2], 0x40014028 (1)[0], 0x40014068 (1)[1],
0x400140A8 (1)[2]

Access: Write-only

• COVFS: Counter Overflow

0: No effect.

1: Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0: No effect.

1: Disables the Load Overrun Interrupt (if TC_CMRx.WAVE = 0).

• CPAS: RA Compare

0: No effect.

1: Disables the RA Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPBS: RB Compare

0: No effect.

1: Disables the RB Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPCS: RC Compare

0: No effect.

1: Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0: No effect.

1: Disables the RA Load Interrupt (if TC_CMRx.WAVE = 0).

• LDRBS: RB Loading

0: No effect.

1: Disables the RB Load Interrupt (if TC_CMRx.WAVE = 0).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
897SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

43. Classical Public Key Cryptography Controller (CPKCC)

43.1 Description

The Classical Public Key Cryptography Controller (CPKCC) is an Atmel macrocell that processes public key
cryptography algorithm calculus in both GF(p) and GF(2^n) fields. The ROMed CPKCL, the Classical Public Key
Cryptography Library, is the library built on the top of the CPKCC.

The Classical Public Key Cryptography Library includes complete implementation of the following public key
cryptography algorithms:

 RSA, DSA:

̶ Modular Exponentiation with CRT up to 6144 bits

̶ Modular Exponentiation without CRT up to 5408 bits

̶ Prime generation

̶ Utilities: GCD/modular Inverse, Divide, Modular reduction, Multiply, …

 Elliptic Curves:

̶ ECDSA up to 1504 bits

̶ Point Multiply,

̶ Point Add/Doubling

̶ Elliptic Curves in GF(p) or GF(2^n)

̶ Choice of the curves parameters so compatibility with NIST Curves or others.

 Deterministic Random Number Generation (DRNG ANSI X9.31) for DSA
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

1068

45.4.3 Interrupts

The USBFS interrupt request line is connected to the interrupt controller. Using the USBFS interrupt requires the
interrupt controller to be programmed first.

45.4.4 USB Pipe/Endpoint x FIFO Data Register (USBFIFOxDATA)

The application has access to each pipe/endpoint FIFO through its reserved 32 KB address space. The application
can access a 64-KB buffer linearly or fixedly as the DPRAM address increment is fully handled by hardware. Byte,
half-word and word accesses are supported. Data should be accessed in a big-endian way.

Disabling the USBFS (by writing a zero to the USBFS_CTRL.USBE bit) does not reset the DPRAM.

45.5 Functional Description

45.5.1 USB General Operation

45.5.1.1 Power-On and Reset

Figure 45-5 describes the USBFS general states.

Figure 45-5. General States

After a hardware reset, the USBFS is in the Reset state. In this state:

 The USBFS is disabled. The USBFS Enable bit in the General Control register (USBFS_CTRL.USBE) is
zero.

 The USBFS clock is stopped in order to minimize the power consumption. The Freeze USB Clock bit
(USBFS_CTRL.FRZCLK) is set.

 The transceiver is in Suspend mode.

 The internal states and registers of the Device and Host modes are reset.

 The DPRAM is not cleared and is accessible.

After writing a one to USBFS_CTRL.USBE, the USBFS enters the Device or the Host mode in idle state.

The USBFS can be disabled at any time by writing a zero to USBFS_CTRL.USBE. In fact, writing a zero to
USBFS_CTRL.USBE ac ts as a ha rdware rese t , except tha t the USBFS_CTRL.FRZCLK and
USBFS_CTRL.UIMOD bits are not reset.

Table 45-3. Peripheral IDs

Instance ID

USBFS 22

Device

USBFS_CTRL.USBE = 0

USBFS_CTRL.USBE = 1
USBFS_CTRL.UIMOD = 1

USBFS off:
USBFS_CTRL.USBE = 0

Clock stopped:
USBFS_CTRL.FRZCLK = 1

USBFS_CTRL.USBE = 0

USBFS_CTRL_USBE = 0

HW
RESET

USBFS_CTRL.UIMOD = 0

Reset

Host

USBFS_CTRL.USBE = 1

<any
other
state>
1083SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

Figure 45-17. Example of an OUT Endpoint with one Data Bank

Figure 45-18. Example of an OUT Endpoint with two Data Banks

Detailed Description

The data is read as follows:

 When the bank is full, USBFS_DEVEPTISRx.RXOUTI and USBFS_DEVEPTIMRx.FIFOCON are set, which
triggers a PEP_x interrupt if USBFS_DEVEPTIMRx.RXOUTE = 1.

 The user acknowledges the interrupt by writing a one to USBFS_DEVEPTICRx.RXOUTIC in order to clear
USBFS_DEVEPTISRx.RXOUTI.

 The user can read the byte count of the current bank from USBFS_DEVEPTISRx.BYCT to know how many
bytes to read, rather than polling USBFS_DEVEPTISRx.RWALL.

 The user reads the data from the current bank by using the USBFIFOnDATA register, until all the expected
data frame is read or the bank is empty (in which case USBFS_DEVEPTISRx.RWALL is cleared and
USBFS_DEVEPTISRx.BYCT reaches zero).

 The user frees the bank and switches to the next bank (if any) by clearing
USBFS_DEVEPTIMRx.FIFOCON.

If the endpoint uses several banks, the current one can be read while the following one is being written by the host.
Then, when the user clears USBFS_DEVEPTIMRx.FIFOCON, the following bank can already be read and
USBFS_DEVEPTISRx.RXOUTI is set immediately.

45.5.2.14 Underflow

Underflow errors exist only for isochronous IN/OUT endpoints. An underflow error sets the Underflow Interrupt
(USBFS_DEVEPTISRx.UNDERFI) bit, which triggers a PEP_x interrupt if the Underflow Interrupt Enable
(USBFS_DEVEPTIMRx.UNDERFE) bit is one.

 An underflow can occur during the IN stage if the host attempts to read from an empty bank. A zero-length
packet is then automatically sent by the USBFS.

OUT DATA
(bank 0) ACK

USBFS_DEVEPTISRx.RXOUTI

USBFS_DEVEPTIMRx.FIFOCON

HW

OUT DATA
(bank 0) ACK

HW

SW

SW

SW

read data from CPU
BANK 0

read data from CPU
BANK 0

NAK

OUT DATA
(bank 0)

ACK

USBFS_DEVEPTISRx.RXOUTI

USBFS_DEVEPTIMRx.FIFOCON

HW

OUT DATA
(bank 1) ACK

SW

SWread data from CPU
BANK 0

HW
SW

read data from CPU
BANK 1
1095SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

45.6.9 Device Global Interrupt Mask Register

Name: USBFS_DEVIMR

Address: 0x40020010

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• SUSPE: Suspend Interrupt Mask

• SOFE: Start of Frame Interrupt Mask

• EORSTE: End of Reset Interrupt Mask

• WAKEUPE: Wake-Up Interrupt Mask

• EORSME: End of Resume Interrupt Mask

• UPRSME: Upstream Resume Interrupt Mask

• PEP_x: Endpoint x Interrupt Mask

• DMA_x: DMA Channel x Interrupt Mask

31 30 29 28 27 26 25 24

– – – DMA_4 DMA_3 DMA_2 DMA_1 –

23 22 21 20 19 18 17 16

– – – – – – – PEP_4

15 14 13 12 11 10 9 8

PEP_3 PEP_2 PEP_1 PEP_0 – – – –

7 6 5 4 3 2 1 0

– UPRSME EORSME WAKEUPE EORSTE SOFE – SUSPE
1117SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

46.5.17.1 Track and Hold Time versus Source Output Impedance, Effective Sampling Rate

The following figure gives a simplified view of the acquisition path.

Figure 46-18. Simplified Acquisition Path

During its tracking phase, the 10-bit ADC charges its sampling capacitor through various serial resistors: source
output resistor, multiplexer series resistor and the sampling switch series resistor. In case of high output source
resistance (low power resistive divider, for example), the track time must be increased to ensure full settling of the
sampling capacitor voltage. The following formulas give the minimum track time that guarantees a 10-bit accurate
settling:

 VDDIN > 3.0V: tTRACK (ns) = 0.12 x RSOURCE(Ω) + 500

 VDDIN ≤ 3.0V: tTRACK (ns) = 0.12 x RSOURCE(Ω) + 1000

According to the calculated track time (tTRACK), the actual track time of the ADC must be adjusted through
the TRACKTIM field in the ADC_MR register. TRACKTIM is obtained by the following formula:

with tCK_ADC = 1 / fCK_ADC and floor(x) the mathematical function that rounds x to the greatest previous integer.

The actual conversion time of the converter is obtained by the following formula:

When converting in Free Run mode, the actual sampling rate of the converter is (1 / TCONV) or as defined by the
following formula:

The maximum source resistance with the actual TRACKTIM setting is:

 RSOURCE_MAX(Ω) = ((TRACKTIM + 1) x tCK_ADC(ns) - 500) / 0.12 for VDDIN > 3.0V; or

 RSOURCE_MAX(Ω) = ((TRACKTIM + 1) x tCK_ADC(ns) - 1000) / 0.12 for VDDIN ≤ 3.0V

Track & HoldMux.

Zsource Ron

Csample

ADC
Input 10-bit

ADC
Core

VDDIO

SAM4

TRACKTIM = floor
TTRACK
TCK_ADC()

 TCONV = (TRACKTIM + 24) x TCK_ADC

FCK_ADC
(TRACKTIM + 24)FS =
1237SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

