
Microchip Technology - ATSAM4C16CB-AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4/M4F

Core Size 32-Bit Dual-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 74

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4c16cb-aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4c16cb-aur-4412999
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register”.

2. See “Vector Table” for more information

3. See “System Handler Priority Registers”

4. See “Interrupt Priority Registers”

5. Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

 “System Handler Control and State Register”

 “Interrupt Clear-enable Registers”.

Table 12-9. Properties of the Different Exception Types

Exception
Number (1) Irq Number (1) Exception Type Priority

Vector Address
or Offset (2) Activation

1 – Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C –

4 -12
Memory
management fault

Configurable(3) 0x00000010 Synchronous

5 -11 Bus fault Configurable(3) 0x00000014
Synchronous when precise,
asynchronous when imprecise

6 -10 Usage fault Configurable(3) 0x00000018 Synchronous

7–10 – – – Reserved –

11 -5 SVCall Configurable(3) 0x0000002C Synchronous

12–13 – – – Reserved –

14 -2 PendSV Configurable(3) 0x00000038 Asynchronous

15 -1 SysTick Configurable(3) 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable(4) 0x00000040 and above(5) Asynchronous
83SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

12.6.11.23 VNMLA, VNMLS, VNMUL

Floating-point multiply with negation followed by add or subtract.

Syntax
VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation of the product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

216

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register”. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0
Rn is non-zero and less than the current BASEPRI value.

See “MRS”.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

12.6.12.8 NOP

No Operation.

Syntax
NOP{cond}

where:

cond is an optional condition code, see “Conditional Execution”.

Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

Condition Flags

This instruction does not change the flags.

Examples
NOP ; No operation
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

228

12.12.2 Floating Point Unit (FPU) User Interface

Table 12-42. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset

0xE000ED88 Coprocessor Access Control Register CPACR Read/Write 0x00000000

0xE000EF34 Floating-point Context Control Register FPCCR Read/Write 0xC0000000

0xE000EF38 Floating-point Context Address Register FPCAR Read/Write –

– Floating-point Status Control Register FPSCR Read/Write –

0xE000E01C Floating-point Default Status Control Register FPDSCR Read/Write 0x00000000
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

300

Figure 16-2. RTT Counting

Prescaler

ALMVALMV-10 ALMV+1

0

RTPRES - 1

CRTV

read RTT_SR

ALMS (RTT_SR)

APB Interface

SLCK

RTTINC (RTT_SR)

ALMV+2 ALMV+3...

APB cycleAPB cycle
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

342

16.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1438

Access: Read-only

• CRTV: Current Real-time Value

Returns the current value of the Real-time Timer.

Note: As CRTV can be updated asynchronously, it must be read twice at the same value.

31 30 29 28 27 26 25 24

CRTV

23 22 21 20 19 18 17 16

CRTV

15 14 13 12 11 10 9 8

CRTV

7 6 5 4 3 2 1 0

CRTV
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

346

19.5.3 Reinforced Safety Watchdog Timer Status Register

Name: RSWDT_SR

Address: 0x400E1508

Access: Read-only

• WDUNF: Watchdog Underflow

0: No watchdog underflow occurred since the last read of RSWDT_SR.

1: At least one watchdog underflow occurred since the last read of RSWDT_SR.

• WDERR: Watchdog Error

0: No watchdog error occurred since the last read of RSWDT_SR.

1: At least one watchdog error occurred since the last read of RSWDT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – WDERR WDUNF
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

396

22.4.3.10 ECC Errors and Corrections

The Flash embeds an ECC module able to correct one unique error and able to detect two errors. The errors are
detected while a read access is performed into memory array and stored in EEFC_FSR (see Section 22.5.3
”EEFC Flash Status Register”). The error report is kept until EEFC_FSR is read.

There is one flag for a unique error on lower half part of the Flash word (64 LSB) and one flag for the upper half
part (MSB). The multiple errors are reported in the same way.

Due to the anticipation technique to improve bandwidth throughput on instruction fetch, a reported error can be
located in the next sequential Flash word compared to the location of the instruction being executed, which is
located in the previously fetched Flash word.

If a software routine processes the error detection independently from the main software routine, the entire Flash
located software must be rewritten because there is no storage of the error location.

If only a software routine is running to program and check pages by reading EEFC_FSR, the situation differs from
the previous case. Performing a check for ECC unique errors just after page programming completion involves a
read of the newly programmed page. This read sequence is viewed as data accesses and is not optimized by the
Flash controller. Thus, in case of unique error, only the current page must be reprogrammed.
445SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key

GETD, GLB,
GGPB, STUI,
SPUI, GCALB,
WUS, EUS, STUS,
SPUS, EA

Commands
requiring no
argument, including
Erase all command

FARG is meaningless, must be written with 0

EPL
Erase plane
command

FARG must be written with a page number that is in the memory plane to be erased.

ES
Erase sector
command

FARG must be written with any page number within the sector to be erased

EPA
Erase pages
command

FARG[1:0] defines the number of pages to be erased

The start page must be written in FARG[15:2].

FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4

FARG[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8, FARG[2]=0

FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,
FARG[3:2]=0

FARG[1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,
FARG[4:2]=0

Refer to Table 22-4 “EEFC_FCR.FARG Field for EPA Command”.

WP, WPL, EWP,
EWPL

Programming
commands

FARG must be written with the page number to be programmed

SLB, CLB Lock bit commands FARG defines the page number to be locked or unlocked

SGPB, CGPB GPNVM commands FARG defines the GPNVM number to be programmed

Value Name Description

0x5A PASSWD
The 0x5A value enables the command defined by the bits of the register. If the field is written with a
different value, the write is not performed and no action is started.
449SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

23.3.5.2 Flash Write Command

This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

 before access to any page other than the current one

 when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock
bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the
programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of
the lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before
programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.

23.3.5.3 Flash Full Erase Command

This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the
erase command is aborted and no page is erased.

23.3.5.4 Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command
(SLB). With this command, several lock bits can be activated. A Bit Mask is provided as argument to the
command. When bit 0 of the bit mask is set, then the first lock bit is activated.

Table 23-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

Table 23-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE EA

2 Write handshaking DATA 0
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

458

30.19.24PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• PIDx: Peripheral Clock x Enable

0: No effect.

1: Enables the corresponding peripheral clock.

Notes: 1. The values for PIDx are defined in the section “Peripheral Identifiers”.

2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0

PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

616

Figure 34-8. Master Read with One Data Byte

Figure 34-9. Master Read with Multiple Data Bytes

Figure 34-10. Master Read Wait State with Multiple Data Bytes

34.7.3.6 Internal Address

The TWI can perform transfers with 7-bit slave address devices and 10-bit slave address devices.

7-bit Slave Addressing

When addressing 7-bit slave devices, the internal address bytes are used to perform random address (read or
write) accesses to reach one or more data bytes, e.g. within a memory page location in a serial memory. When
performing read operations with an internal address, the TWI performs a write operation to set the internal address
into the slave device, and then switch to Master receiver mode. Note that the second START condition (after

AS DADR R DATA NA P

TXCOMP

Write START &
STOP Bit

RXRDY

Read RHR

TWD

NAAS DADR R DATA n A ADATA (n+1) A DATA (n+m)DATA (n+m)-1 PTWD

TXCOMP

Write START Bit

RXRDY

Write STOP Bit
after next-to-last data read

Read RHR
DATA n

Read RHR
DATA (n+1)

Read RHR
DATA (n+m)-1

Read RHR
DATA (n+m)

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

RXRDY

Read RHR (Data n)

STOP command performed
(by writing in the TWI_CR)

TWD

TWCK

Read RHR (Data n+1) Read RHR (Data n+2)

Clock Wait State
729SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

The flowchart shown in Figure 34-23 gives an example of read and write operations in Multi-master mode.

Figure 34-23. Multi-master Flowchart

Programm the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Stop transfer

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No No

No No

No

START
741SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

34.8.2 TWI Master Mode Register

Name: TWI_MMR

Address: 0x40018004 (0), 0x4001C004 (1)

Access: Read/Write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction

0: Master write direction.

1: Master read direction.

• DADR: Device Address

The device address is used to access slave devices in Read or Write mode. These bits are only used in Master mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8

– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0 NONE No internal device address

1 1_BYTE One-byte internal device address

2 2_BYTE Two-byte internal device address

3 3_BYTE Three-byte internal device address
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

754

36.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface

Table 36-14. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write 0x0

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only 0x0

0x0018 Receive Holding Register US_RHR Read-only 0x0

0x001C Transmit Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0

0x002C–0x003C Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only 0x0

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0x0

0x0050 Manchester Configuration Register US_MAN Read/Write 0x30011004

0x0054–0x005C Reserved – – –

0x0060–0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register US_WPMR Read/Write 0x0

0x00E8 Write Protection Status Register US_WPSR Read-only 0x0

0x00EC–0x00FC Reserved – – –

0x0100–0x0128 Reserved for PDC Registers – – –
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

822

• CTSIC: Clear to Send Input Change Interrupt Disable

• MANE: Manchester Error Interrupt Disable
837SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

38.6.3 PWM Controller Operations

38.6.3.1 Initialization

Before enabling the output channel, this channel must have been configured by the software application:

 Configuration of the clock generator if DIVA and DIVB are required

 Selection of the clock for each channel (CPRE field in the PWM_CMRx register)

 Configuration of the waveform alignment for each channel (CALG field in the PWM_CMRx register)

 Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing in PWM_CPRDx
Register is possible while the channel is disabled. After validation of the channel, the user must use
PWM_CUPDx Register to update PWM_CPRDx as explained below.

 Configuration of the duty cycle for each channel (CDTY in the PWM_CDTYx register). Writing in
PWM_CDTYx Register is possible while the channel is disabled. After validation of the channel, the user
must use PWM_CUPDx Register to update PWM_CDTYx as explained below.

 Configuration of the output waveform polarity for each channel (CPOL in the PWM_CMRx register)

 Enable Interrupts (Writing CHIDx in the PWM_IER register)

 Enable the PWM channel (Writing CHIDx in the PWM_ENA register)

It is possible to synchronize different channels by enabling them at the same time by means of writing
simultaneously several CHIDx bits in the PWM_ENA register.

 In such a situation, all channels may have the same clock selector configuration and the same period
specified.

38.6.3.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the value in the Period
Register (PWM_CPRDx) and the Duty Cycle Register (PWM_CDTYx) can help the user in choosing. The event
number written in the Period Register gives the PWM accuracy. The Duty Cycle quantum cannot be lower than
1/PWM_CPRDx value. The higher the value of PWM_CPRDx, the greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value between 1 up to 14 in
PWM_CDTYx Register. The resulting duty cycle quantum cannot be lower than 1/15 of the PWM period.

38.6.3.3 Changing the Duty Cycle or the Period

It is possible to modulate the output waveform duty cycle or period.

To prevent unexpected output waveform, the user must use the update register (PWM_CUPDx) to change
waveform parameters while the channel is still enabled. The user can write a new period value or duty cycle value
in the update register (PWM_CUPDx). This register holds the new value until the end of the current cycle and
updates the value for the next cycle. Depending on the CPD field in the PWM_CMRx register, PWM_CUPDx either
updates PWM_CPRDx or PWM_CDTYx. Note that even if the update register is used, the period must not be
smaller than the duty cycle.
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

916

39.8.12 SLCDC LSB Memory Register

Name: SLCDC_LMEMRx [x = 0..5]

Address: 0x4003C200 [0], 0x4003C208 [1], 0x4003C210 [2], 0x4003C218 [3], 0x4003C220 [4], 0x4003C228 [5]

Access: Read/Write

• LPIXEL: LSB Pixels Pattern Associated to COMx Terminal

0: The pixel associated to COMx terminal is not visible (if Non-inverted Display mode is used).

1: The pixel associated to COMx terminal is visible (if Non-inverted Display mode is used).

Note: LPIXEL[n] (n = 0..31) drives SEGn terminal.

31 30 29 28 27 26 25 24

LPIXEL

23 22 21 20 19 18 17 16

LPIXEL

15 14 13 12 11 10 9 8

LPIXEL

7 6 5 4 3 2 1 0

LPIXEL
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

964

Figure 42-4. Region Descriptor

End of Region 0
ICMDSCR Region 0 Descriptor

Region 1 Descriptor

Region ADDR

Region CFG

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Optional Region 0 Secondary List

Region ADDR

Unused

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Region 2 Descriptor

Region 3 Descriptor

Main List
1043SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

The user then writes into the FIFO and clears the USBFS_HSTPIPIDRx.FIFOCON bit to allow the USBFS to send
the data. If the OUT pipe is composed of multiple banks, this also switches to the next bank. The
USBFS_HSTPIPISRx.TXOUTI and USBFS_HSTPIPIMRx.FIFOCON bits are updated in accordance with the
status of the next bank.

USBFS_HSTPIPISRx.TXOUTI is always cleared before clearing USBFS_HSTPIPIMRx.FIFOCON.

The USBFS_HSTPIPISRx.RWALL bit is set when the current bank is not full, i.e., when the software can write
further data into the FIFO.

Note: If the user decides to switch to the Suspend state (by writing a zero to the USBFS_HSTCTRL.SOFE bit) while a bank
is ready to be sent, the USBFS automatically exits this state and the bank is sent.

Figure 45-24. Example of an OUT Pipe with one Data Bank

Figure 45-25. Example of an OUT Pipe with two Data Banks and no Bank Switching Delay

Figure 45-26. Example of an OUT Pipe with two Data Banks and a Bank Switching Delay

OUT DATA
(bank 0) ACK

HW

write data to CPU
BANK 0

SW

SW SW

SW

OUT

write data to CPU
BANK 0

USBFS_HSTPIPISRx.TXOUTI

USBFS_HSTPIPIMRx.FIFOCON

OUT DATA
(bank 0) ACK

write data to CPU
BANK 0

SW

SW SW

SW
write data to CPU

BANK 1

SW

HW

write data to CPU
BANK0

OUT DATA
(bank 1) ACK

USBFS_HSTPIPISRx.TXOUTI

USBFS_HSTPIPIMRx.FIFOCON

OUT
DATA

(bank 0)
ACK

write data to CPU
BANK 0

SW

SW SW

SW

OUT
DATA

(bank 1)
ACK

write data to CPU
BANK 1

SW

HW

write data to CPU
BANK0

USBFS_HSTPIPISRx.TXOUTI

USBFS_HSTPIPIMRx.FIFOCON
SAM4C Series [DATASHEET]
Atmel-11102G-ATARM-SAM4C32-SAM4C16-SAM4C8-SAM4C4-Datasheet_24-Oct-16

1102

