NXP USA Inc. - P89LV51RD2BN,112 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-DIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lv51rd2bn-112

Email: info@E-XFL.COM

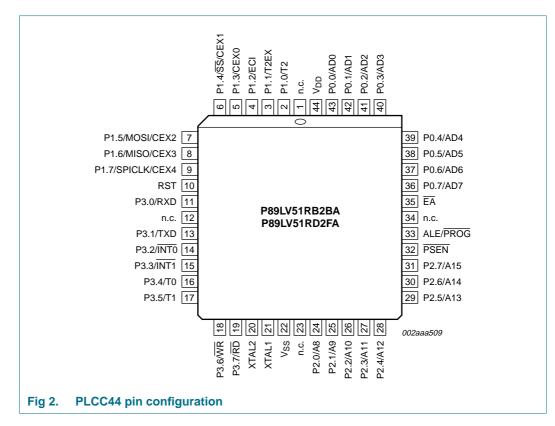
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit microcontrollers with 80C51 core

- Brownout detection
- Low power modes
 - Power-down mode with external interrupt wake-up
 - Idle mode
- PLCC44 and TQFP44 packages

3. Ordering information

Table 1.Ordering information


Type number	Package				
	Name	Description	Version		
P89LV51RB2BA	PLCC44	plastic leaded chip carrier; 44 leads	SOT187-2		
P89LV51RC2FBC	TQFP44	plastic thin quad flat package; 44 leads; body $10 \times 10 \times 1.0$ mm	SOT376-1		
P89LV51RD2FA	PLCC44	plastic leaded chip carrier; 44 leads	SOT187-2		
P89LV51RD2BBC	TQFP44	plastic thin quad flat package; 44 leads; body $10 \times 10 \times 1.0$ mm	SOT376-1		

3.1 Ordering options

Table 2. Ordering	options		
Type number	Flash memory	Temperature range	Frequency
P89LV51RB2BA	16 kB	0 °C to +70 °C	0 MHz to 40 MHz
P89LV51RC2FBC	32 kB	–40 °C to +85 °C	
P89LV51RD2FA	64 kB	–40 °C to +85 °C	
P89LV51RD2BBC	64 kB	0 °C to +70 °C	

8-bit microcontrollers with 80C51 core

5. Pinning information

5.1 Pinning

NXP Semiconductors

P89LV51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

Symbol	Pin	2/RD2 pin de	Туре	Description
Cymbol	TQFP44	PLCC44	Type	Description
P2.7/A15	25	31	I/O	P2.7 — Port 2 bit 7.
12	20	01	0	A15 — Address bit 15.
P3.0 to P3.7			I/O with internal pull-up	Port 3 : Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins are pulled HIGH by the internal pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally pulled LOW will source current (I_{IL}) because of the internal pull-ups. Port 3 also receives some control signals and a partial of high-order address bits during the external host mode programming and verification.
P3.0/RXD	5	11	I	P3.0 — Port 3 bit 0.
			l	RXD — Serial input port.
P3.1/TXD	7	13	0	P3.1 — Port 3 bit 1.
			0	TXD — Serial output port.
P3.2/INT0	8	14	I	P3.2 — Port 3 bit 2.
			I	INTO — External interrupt 0 input.
P3.3/INT1	9	15	I	P3.3 — Port 3 bit 3.
			I	INT1 — External interrupt 1 input.
P3.4/T0	10	16	I/O	P3.4 — Port 3 bit 4.
			I	T0 — External count input to Timer/counter 0.
P3.5/T1	11	17	I/O	P3.5 — Port 3 bit 5.
			I	T1 — External count input to Timer/counter 1.
P3.6/WR	12	18	0	P3.6 — Port 3 bit 6.
			0	WR — External data memory write strobe.
P3.7/RD	13	19	0	P3.7 — Port 3 bit 7.
			0	RD — External data memory read strobe.
PSEN	26	32	I/O	Program Store Enable : PSEN is the read strobe for external program memory. When the device is executing from internal program memory, PSEN is inactive (HIGH). When the device is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. A forced HIGH-to-LOW input transition on the PSEN pin while the RST input is continually held HIGH for more than 10 machine cycles will cause the device to enter external host mode programming.
RST	4	10	I	Reset : While the oscillator is running, a HIGH logic state on this pin for two machine cycles will reset the device. If the \overrightarrow{PSEN} pin is driven by a HIGH-to-LOW input transition while the RST input pin is held HIGH, the device will enter the external host mode, otherwise the device will enter the normal operation mode.
ĒĀ	29	35	I	External Access Enable : \overline{EA} must be connected to V _{SS} in order to enable the device to fetch code from the external program memory. \overline{EA} must be strapped to V _{DD} for internal program execution. The \overline{EA} pin can tolerate a high voltage of 12 V.

Table 3. P89LV51RB2/RC2/RD2 pin description ...continued

8-bit microcontrollers with 80C51 core

Symbol	Pin		Туре	Description
	TQFP44	PLCC44		
ALE/PROG	27	33	Ι/Ο	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG) for flash programming. Normally the ALE ^[1] is emitted at a constant rate of 1_{6}^{\prime} the crystal frequency ^[2] and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory. However, if bit AO is set to '1', ALE is disabled.
n.c.	6, 17, 28, 39	1, 12, 23, 34	I/O	not connected
XTAL1	15	21	I	Crystal 1 : Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	14	20	0	Crystal 2: Output from the inverting oscillator amplifier.
V _{DD}	38	44	I	Power supply
V _{SS}	16	22	I	Ground

Table 3. P89LV51RB2/RC2/RD2 pin description ...continued

[1] ALE loading issue: When ALE pin experiences higher loading (> 30 pF) during the reset, the microcontroller may accidentally enter into modes other than normal working mode. The solution is to connect a pull-up resistor of 3 kΩ to 50 kΩ from pin ALE to V_{DD}.

[2] For 6-clock mode, ALE is emitted at $\frac{1}{3}$ of crystal frequency.

8-bit microcontrollers with 80C51 core

Table 4.Special function registers* Indicates SFRs that are bit addressable.

Name	lame Description				Bi	t functions a	nd address	es		
		addr.	MSB							LSB
	'	Bit address	E7	E6	E5	E4	E3	E2	E1	E0
ACC*	Accumulator	E0H								
AUXR	Auxiliary function register	8EH	-	-	-	-	-	-	EXTRAM	AO
AUXR1	Auxiliary function register 1	A2H	-	-	-	-	GF2	0	-	DPS
		Bit address	F7	F6	F5	F4	F3	F2	F1	F0
B*	B register	F0H								
CCAP0H	Module 0 Capture HIGH	FAH								
CCAP1H	Module 1 Capture HIGH	FBH								
CCAP2H	Module 2 Capture HIGH	FCH								
CCAP3H	Module 3 Capture HIGH	FDH								
CCAP4H	Module 4 Capture HIGH	FEH								
CCAP0L	Module 0 Capture LOW	EAH								
CCAP1L	Module 1 Capture LOW	EBH								
CCAP2L	Module 2 Capture LOW	ECH								
CCAP3L	Module 3 Capture LOW	EDH								
CCAP4L	Module 4 Capture LOW	EEH								
CCAPM0	Module 0 Mode	DAH	-	ECOM_0	CAPP_0	CAPN_0	MAT_0	TOG_0	PWM_0	ECCF_
CCAPM1	Module 1 Mode	DBH	-	ECOM_1	CAPP_1	CAPN_1	MAT_1	TOG_1	PWM_1	ECCF_
CCAPM2	Module 2 Mode	DCH	-	ECOM_2	CAPP_2	CAPN_2	MAT_2	TOG_2	PWM_2	ECCF_
CCAPM3	Module 3 Mode	DDH	-	ECOM_3	CAPP_3	CAPN_3	MAT_3	TOG_3	PWM_3	ECCF_
CCAPM4	Module 4 Mode	DEH	-	ECOM_4	CAPP_4	CAPN_4	MAT_4	TOG_4	PWM_4	ECCF_
		Bit address	DF	DE	DD	DC	DB	DA	D9	D8
CCON*	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
СН	PCA Counter HIGH	F9H								
CL	PCA Counter LOW	E9H								
CMOD	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
DPTR	Data Pointer (2 B)									
DPH	Data Pointer HIGH	83H								
DPL	Data Pointer LOW	82H								

P89LV511 Product data sheet

Rev. 05 — 15 December 2009

8-bit microcontrollers with 80C51 core

Record type	Command/data function
09	Write serial number
	:nnxxxx09sssscc
	Where:
	xxxxxx = required field but value is a 'don't care'
	09 = write serial number function
	ssss = serial number contents
	cc = checksum
	Example:
	:0300009010203EE (write serial number = 010203)
0A	Display serial number
	:xxxxx0Acc
	Where:
	xxxxxx = required field but value is a 'don't care'
	0A = display serial number function
	cc = checksum
	Example:
	:000000AF6
0B	Reset and run user code
	:xxxxx0Bcc
	Where:
	xxxxxx = required field but value is a 'don't care' 0B = reset and run user code
	cc = checksum
	Example:
	:000000BF5
	.00000000000000000000000000000000000000

6.3.5 Using the serial number

This device has the option of storing a 31 B serial number along with the length of the serial number (for a total of 32 B) in a non-volatile memory space. When ISP mode is entered, the serial number length is evaluated to determine if the serial number is in use. If the length of the serial number is programmed to either 00H or FFH, the serial number is considered not in use. If the serial number is in use, reading, programming, or erasing of the user code memory or the serial number is blocked until the user transmits a 'verify serial number' record containing a serial number and length that matches the serial number and length previously stored in the device. The user can reset the serial number to all zeros and set the length to zero by sending the 'reset serial number' record. In addition, the 'reset serial number' record will also erase all user code.

6.3.6 IAP method

Several IAP calls are available for use by an application program to permit selective erasing, reading and programming of flash sectors, security bit, configuration bytes, and device id. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at 1FF0H. The IAP calls are shown in Table 13.

not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. Under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers. <u>Table 24</u> shows commonly used baud rates and how they can be obtained from Timer 2.

6.5.5 Summary of baud rate equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud rate = Timer 2 overflow rate / 16

If Timer 2 is being clocked internally, the baud rate is:

Baud rate = f_{osc} / (16 × (65536 – (RCAP2H, RCAP2L)))

Where f_{osc} = oscillator frequency

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

RCAP2H, RCAP2L = $65536 - f_{osc} / (16 \times baud rate)$

Table 24.	Timer 2	generated	commonly	used ba	ud rates
-----------	---------	-----------	----------	---------	----------

Rate	Oscillator frequency	Timer 2		
			RCAP2L	
750 kBd	12 MHz	FF	FF	
19.2 kBd	12 MHz	FF	D9	
9.6 kBd	12 MHz	FF	B2	
4.8 kBd	12 MHz	FF	64	
2.4 kBd	12 MHz	FE	C8	
600 Bd	12 MHz	FB	1E	
220 Bd	12 MHz	F2	AF	
600 Bd	6 MHz	FD	8F	
220 Bd	6 MHz	F9	57	

6.6 UART

The UART operates in all standard modes. Enhancements over the standard 80C51 UART include Framing Error detection, and automatic address recognition.

6.6.1 Mode 0

Serial data enters and exits through RXD, and TXD outputs the shift clock. Only 8 bits are transmitted or received, LSB first. The baud rate is fixed at $\frac{1}{6}$ of the CPU clock frequency. The UART is configured to operate in this mode and outputs serial clock on TXD line no matter whether it sends or receives data on the RXD line.

8-bit microcontrollers with 80C51 core

Table 26.	SCON - Seria	SCON - Serial port control register (address 98H) bit descriptions continued			
Bit	Symbol	Description			
2	RB8	In modes 2 and 3, is the 9th data bit that was received. In mode 1, if $SM2 = 0$, RB8 is the stop bit that was received. In mode 0, RB8 is undefined.			
1	TI	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the stop bit in the other modes, in any serial transmission. Must be cleared by software.			
0	RI	Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or approximately halfway through the stop bit time in all other modes. (See SM2 for exceptions). Must be cleared by software.			

	Table 27.	SCON - Serial	port control register	(address 98H) SM0/SM1 mode definitions
--	-----------	---------------	-----------------------	--------------	----------------------------

SM0, SM1	UART mode	Baud rate
0 0	0: shift register	CPU clock / 6
0 1	1: 8-bit UART	variable
1 0	2: 9-bit UART	CPU clock / 32 or CPU clock / 16
11	3: 9-bit UART	variable

6.6.5 Framing error

Framing error (FE) is reported in the SCON.7 bit if SMOD0 (PCON.6) = 1. If SMOD0 = 0, SCON.7 is the SM0 bit for the UART, it is recommended that SM0 is set up before SMOD0 is set to '1'.

6.6.6 More about UART mode 1

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset to align its rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated: (a) RI = 0, and (b) either SM2 = 0, or the received stop bit = 1.

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated.

6.6.7 More about UART modes 2 and 3

Reception is performed in the same manner as in mode 1.

The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated: (a) RI = 0, and (b) either SM2 = 0, or the received 9th data bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF.

6.6.8 Multiprocessor communications

UART modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received or transmitted. When data is received, the 9th bit is stored in RB8. The UART can be programmed so that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. One way to use this feature in multiprocessor systems is as follows:

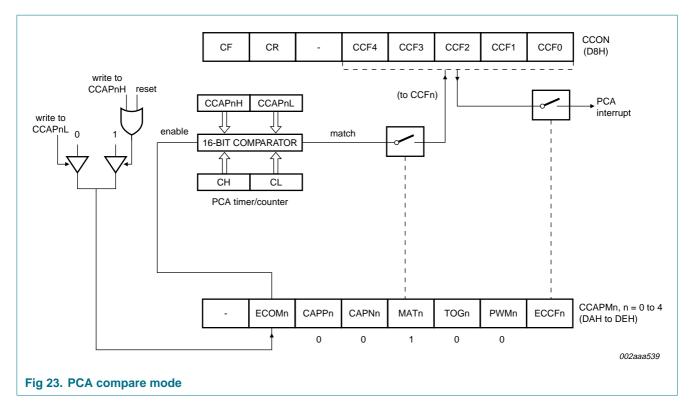
When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in a way that the 9th bit is '1' in an address byte and '0' in the data byte. With SM2 = 1, no slave will be interrupted by a data byte, i.e. the received 9th bit is '0'. However, an address byte having the 9th bit set to '1' will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed or not. The addressed slave will clear its SM2 bit and prepare to receive the data (still 9 bits long) that follow. The slaves that weren't being addressed leave their SM2 bits set and ignore the subsequent data bytes.

SM2 has no effect in mode 0, and in mode 1 can be used to check the validity of the stop bit, although this is better done with the Framing Error flag. When the UART receives data in mode 1 and SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

6.6.9 Automatic address recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled for the UART by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the 'Given' address or the 'Broadcast' address. The 9 bit mode requires that the 9th information bit is a '1' to indicate that the received information is an address and not data.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two Special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to be used and which bits are 'don't care'. The SADEN mask can be logically ANDed with the SADDR to create the 'Given' address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others.


This device uses the methods presented in <u>Figure 15</u> to determine if a 'Given' or 'Broadcast' address has been received or not.

P89LV51RB2_RC2_RD2_5
Product data sheet

NXP Semiconductors

P89LV51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

6.9.3 High-speed output mode

In this mode (Figure 24) the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOGn, MATn, and ECOMn bits in the module's CCAPMn SFR must be set.

8-bit microcontrollers with 80C51 core

module's CCAPnL SFR the output will be LOW, when it is equal to or greater than, the output will be HIGH. When CL overflows from FF to 00, CCAPnL is reloaded with the value in CCAPnH. This allows updating the PWM without glitches. The PWMn and ECOMn bits in the module's CCAPMn register must be set to enable the PWM mode.

6.9.5 PCA watchdog timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a Watchdog. However, this module can still be used for other modes if the Watchdog is not needed. Figure 25 shows a diagram of how the Watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven HIGH.

User's software then must periodically change (CCAP4H, CCAP4L) to keep a match from occurring with the PCA timer (CH, CL). This code is given in the WATCHDOG routine shown below.

In order to hold off the reset, the user has three options:

- Periodically change the compare value so it will never match the PCA timer.
- Periodically change the PCA timer value so it will never match the compare values.
- Disable the Watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for **all** modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This routine should not be part of an interrupt service routine, because if the program counter goes astray and gets stuck in an infinite loop, interrupts are still serviced and the Watchdog continues to reset. Thus, the purpose of the Watchdog would be defeated. Instead, call this subroutine from the main program within 2¹⁶ count of the PCA timer.

6.10 Security bit

The Security Bit protects against software piracy and prevents the contents of the flash from being read by unauthorized parties in Parallel Programmer mode. It also protects against code corruption resulting from accidental erasing and programming to the internal flash memory.

When the Security Bit is activated, all parallel programming commands except for Chip-Erase are ignored (thus the device cannot be read). However, ISP reading, writing, or erasing of the user's code can still be performed if the serial number and length has not been programmed. **Therefore, when a user requests to program the Security Bit, the programmer should prompt the user and program a serial number into the device.**

6.11 Interrupt priority and polling sequence

The device supports eight interrupt sources under a four level priority scheme. <u>Table 43</u> summarizes the polling sequence of the supported interrupts. Note that the SPI serial interface and the UART share the same interrupt vector. (See <u>Figure 26</u>).

Description	Interrupt flag	Vector address	Interrupt enable bit	Interrupt priority bit	Service priority	Wake-up power-down
External interrupt 0	IE0	0003H	EX0	PX0/H	1 (highest)	yes
Brownout	-	004BH	EBO	PBO/H	2	no
ТО	TF0	000BH	ET0	PT0/H	3	no
External interrupt 1	IE1	0013H	EX1	PX1/H	4	yes
T1	TF1	001BH	ET1	PT1/H	5	no
PCA	CF/CCFn	0033H	EC	PPCH	6	no
UART/SPI	TI/RI/SPIF	0023H	ES	PS/H	7	no
T2	TF2, EXF2	002BH	ET2	PT2/H	8	no

Table 43. Interrupt polling sequence

8-bit microcontrollers with 80C51 core

 Table 45.
 IEN0 - Interrupt enable register 0 (address A8H) bit descriptions

Bit	Symbol	Description
7	EA	Interrupt Enable Bit: $EA = 1$ interrupt(s) can be serviced, $EA = 0$ interrupt servicing disabled.
6	EC	PCA Interrupt Enable bit.
5	ET2	Timer 2 Interrupt Enable.
4	ES	Serial Port Interrupt Enable.
3	ET1	Timer 1 Overflow Interrupt Enable.
2	EX1	External Interrupt 1 Enable.
1	ET0	Timer 0 Overflow Interrupt Enable.
0	EX0	External Interrupt 0 Enable.

 Table 46.
 IEN1 - Interrupt enable register 1 (address E8H) bit allocation

 Bit addressable; reset value: 00H.

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	EBO	-	-	-

Table 47. IEN1 - Interrupt enable register 1 (address E8H) bit descriptions

Bit	Symbol	Description
7 to 4	-	Reserved for future use. Should be set to '0' by user programs.
3	EBO	Brownout Interrupt Enable. 1 = enable, 0 = disable.
2 to 0	-	Reserved for future use. Should be set to '0' by user programs.

 Table 48.
 IP0 - Interrupt priority 0 low register (address B8H) bit allocation

 Bit addressable; reset value: 00H.

Bit	7	6	5	4	3	2	1	0
Symbol	-	PPC	PT2	PS	PT1	PX1	PT0	PX0

Table 49. IP0 - Interrupt priority 0 low register (address B8H) bit descriptions

Bit	Symbol	Description
7	-	Reserved for future use. Should be set to '0' by user programs.
6	PPC	PCA interrupt priority LOW bit.
5	PT2	Timer 2 interrupt priority LOW bit.
4	PS	Serial Port interrupt priority LOW bit.
3	PT1	Timer 1 interrupt priority LOW bit.
2	PX1	External interrupt 1 priority LOW bit.
1	PT0	Timer 0 interrupt priority LOW bit.
0	PX0	External interrupt 0 priority LOW bit.

Table 50. IP0H - Interrupt priority 0 high register (address B7H) bit allocation Not bit addressable; reset value: 00H.

Bit	7	6	5	4	3	2	1	0
Symbol	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H

8-bit microcontrollers with 80C51 core

Table 51. IP0H - Interrupt priority 0 high register (address B7H) bit descriptions

Bit	Symbol	Description
7	-	Reserved for future use. Should be set to '0' by user programs.
6	PPCH	PCA interrupt priority HIGH bit.
5	PT2H	Timer 2 interrupt priority HIGH bit.
4	PSH	Serial Port interrupt priority HIGH bit.
3	PT1H	Timer 1 interrupt priority HIGH bit.
2	PX1H	External interrupt 1 priority HIGH bit.
1	PT0H	Timer 0 interrupt priority HIGH bit.
0	PX0H	External interrupt 0 priority HIGH bit.

 Table 52.
 IP1 - Interrupt priority 1 register (address F8H) bit allocation

 Bit addressable; reset value: 00H.

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	PBO	-	-	-	-

Table 53. IP1 - Interrupt priority 1 register (address F8H) bit descriptions

Bit	Symbol	Description
7 to 5	-	Reserved for future use. Should be set to '0' by user programs.
4	PBO	Brownout interrupt priority bit.
3 to 0	-	Reserved for future use. Should be set to '0' by user programs.

 Table 54.
 IP1H - Interrupt priority 1 high register (address F7H) bit allocation

 Not bit addressable; reset value: 00H.

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	PBOH	-	-	-	-

Table 55. IP1H - Interrupt priority 1 high register (address F7H) bit descriptions

Bit	Symbol	Description
7 to 5	-	Reserved for future use. Should be set to '0' by user programs.
4	PBOH	Brownout interrupt priority bit.
3 to 0	-	Reserved for future use. Should be set to '0' by user programs.

6.12 Power-saving modes

The device provides two power saving modes of operation for applications where power consumption is critical. The two modes are Idle and Power-down, see <u>Table 56</u>.

6.12.1 Idle mode

Idle mode is entered by setting the IDL bit in the PCON register. In Idle mode, the Program Counter (PC) is stopped. The system clock continues to run and all interrupts and peripherals remain active. The on-chip RAM and the special function registers hold their data during this mode.

7. Limiting values

Table 61. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

Symbol	Parameter	Conditions	Min	Max	Unit
T _{amb(bias)}	bias ambient temperature		-55	+125	°C
T _{stg}	storage temperature		-65	+150	°C
VI	input voltage	on \overline{EA} pin to V_{SS}	-0.5	+14	V
V _n	voltage on any other pin	except V_{SS} ; with respect to V_{DD}	-0.5	V _{DD} + 0.5	V
I _{OL(I/O)}	LOW-level output current per input/output pin	pins P1.5, P1.6, P1.7	-	20	mA
		all other pins	-	15	mA
P _{tot(pack)}	total power dissipation per package	based on package heat transfer, not device power consumption	-	1.5	W

8. Static characteristics

Table 62. Static characteristics

 $T_{amb} = 0 \circ C \text{ to } +70 \circ C \text{ or } -40 \circ C \text{ to } +85 \circ C; V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}; V_{SS} = 0 \text{ V}.$

Symbol	Parameter	Conditions		Min	Max	Unit
n _{endu(fl)}	endurance of flash memory	JEDEC Standard A117	[1]	10000	-	cycles
t _{ret(fl)}	flash memory retention time	JEDEC Standard A103	[1]	100	-	years
I _{latch}	I/O latch-up current	JEDEC Standard 78	[1]	100 + I _{DD}	-	mA
V _{IL}	LOW-level input voltage	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$		-0.5	+0.7	V
V _{IH}	HIGH-level input voltage	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$		$0.2V_{DD} + 0.9$	$V_{DD} + 0.5$	V
		XTAL1, RST		0.7V _{DD}	V _{DD} + 0.5	V
V _{OL}	LOW-level output voltage	V _{DD} = 2.7 V; ports 1.5, 1.6, 1.7				
		I _{OL} = 16 mA		-	1.0	V
		$V_{DD} = 2.7 V$; ports 1, 2, 3, except PSEN, ALE	[2][3][4]			
		I _{OL} = 100 μA		-	0.3	V
		I _{OL} = 1.6 mA		-	0.45	V
		I _{OL} = 3.5 mA		-	1.0	V
		$V_{DD} = 2.7 \text{ V}; \text{ port 0}, \overline{\text{PSEN}}, \text{ALE}$				
		I _{OL} = 200 μA		-	0.3	V
		I _{OL} = 3.2 mA		-	0.45	V

8-bit microcontrollers with 80C51 core

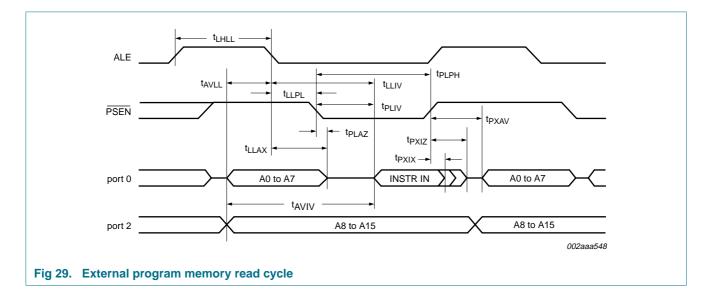
Symbol	Parameter	Conditions	Min	Max	Unit
V _{OH}	HIGH-level output voltage	V _{DD} = 2.7 V; ports 1, 2, 3, ALE,	<u>[5]</u>		
		I _{OH} = −10 μA	V _{DD} – 0.3	-	V
		I _{OH} = -30 μA	$V_{DD} - 0.7$	-	V
		I _{OH} = -60 μA	V _{DD} – 1.5	-	V
		V _{DD} = 2.7 V; port 0 in External Bus mode			
		I _{OH} = -200 μA	$V_{DD} - 0.3$	-	V
		I _{OH} = -3.2 mA	$V_{DD} - 0.7$	-	V
V _{bo}	brownout trip voltage		2.35	2.55	V
IIL	LOW-level input current	V _I = 0.4 V; ports 1, 2, 3	-	-75	μA
I _{THL}	HIGH-LOW transition current	V _I = 2 V; ports 1, 2, 3	<u>[6]</u>	-650	μA
LI	input leakage current	0.45 V < V _I < V _{DD} – 0.3 V; port 0	-	±10	μΑ
R _{pd}	pull-down resistance	on pin RST	-	225	kΩ
C _{iss}	input capacitance	1 MHz; T _{amb} = 25 °C	[7] _	15	pF
I _{DD(oper)}	operating supply current	f _{osc} = 12 MHz	-	11.5	mA
		f _{osc} = 33 MHz	-	30	mA
DD(idle)	Idle mode supply current	$f_{osc} = 12 \text{ MHz}$	-	8.5	mA
		f _{osc} = 33 MHz	-	21	mA
DD(pd)	Power-down mode supply current	minimum $V_{DD} = 2 V$			
		$T_{amb} = 0 \ ^{\circ}C \ to +70 \ ^{\circ}C$	-	45	μA
		$T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C$	-	55	μA

Table 62. Static characteristics ... continued

[1] This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

[2] Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

- a) Maximum IOL per 8-bit port: 26 mA
- b) Maximum I_{OL} total for all outputs: 71 mA
- c) If I_{OL} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.
- [3] Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the Vol of ALE and Ports 1 and 3. The noise due to external bus capacitance discharging into the Port 0 and 2 pins when the pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt trigger, or use an address latch with a Schmitt trigger STROBE input.
- [4] Load capacitance for Port 0, ALE and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
- Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{DD} 0.7 V specification when [5] the address bits are stabilizing.
- Pins of Ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its [6] maximum value when V₁ is approximately 2 V.
- Pin capacitance is characterized but not tested. Pin $\overline{EA} = 25 \text{ pF}$ (max). [7]


9.1 Explanation of symbols

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The characters are described below:

- A Address
- C Clock
- D Input data
- H Logic level HIGH
- I Instruction (program memory contents)
- L Logic level LOW or ALE
- P PSEN
- Q Output data
- **R** RD signal
- T Time
- V Valid
- $W \overline{WR}$ signal
- X No longer a valid logic level
- Z High impedance (Float)

Example:

 t_{AVLL} = Address valid to ALE LOW time t_{LLPL} = ALE LOW to PSEN LOW time

8-bit microcontrollers with 80C51 core

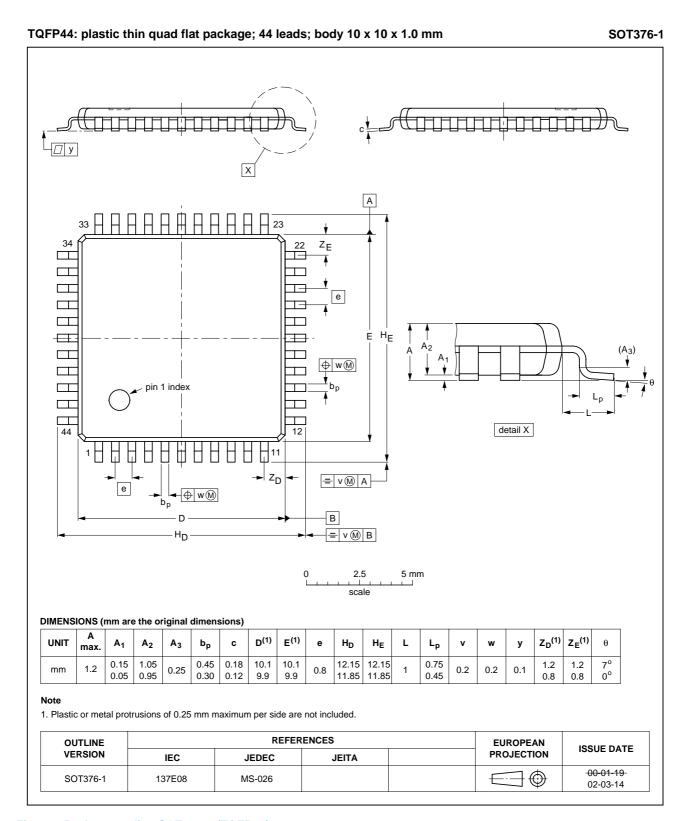


Fig 39. Package outline SOT376-1 (TQFP44)

8-bit microcontrollers with 80C51 core

11. Abbreviations

Table 66.	Abbreviations
Acronym	Description
DUT	Device Under Test
EMI	Electro-Magnetic Interference
IAP	In-Application Programming
ISP	In-System Programming
MCU	Microcontroller Unit
PCA	Programmable Counter Array
PWM	Pulse Width Modulator
RC	Resistance-Capacitance
SFR	Special Function Register
SPI	Serial Peripheral Interface
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter

12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
P89LV51RB2_RC2_RD2_5	20091215	Product data sheet	-	P89LV51RB2_RC2_RD2-04		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 <u>Table 3</u>: Removed sentence "However, Security lock level 4 will disable <u>EA</u>" for <u>EA</u> description. 					
	 <u>Table 37</u>: Second row, changed "f_{osc} / 6" to "f_{osc} / 2". 					
	• Figure <u>30</u> : Updated figure.					
	 Figure 31: L 	Jpdated figure.				
P89LV51RB2_RC2_RD2-04 (9397 750 14342)	20041202	Product data	-	P89LV51RB2_RC2_RD2-03		
P89LV51RB2_RC2_RD2-03 (9397 750 14101)	20041011	Product data	-	P89LV51RB2_RC2_RD2-02		
P89LV51RB2_RC2_RD2-02 (9397 750 11783)	20031113	Product data	-	P89LV51RB2_RC2_RD2-01		
P89LV51RB2_RC2_RD2-01 (9397 750 11669)	20030630	Product data	ECN 853-2432 30075 dated 27 June 2003	-		