
Microchip Technology - ATMEGA32A-ANR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega32a-anr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32a-anr-4407355
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2. Configuration Summary
Features ATmega32A

Pin count 44

Flash (KB) 32

SRAM (KB) 2

EEPROM (KB) 1

General Purpose I/O pins 32

SPI 1

TWI (I2C) 1

USART 1

ADC 10-bit, up to 76.9ksps (15ksps at max resolution)

ADC channels 8

AC propagation delay Typ 400ns

8-bit Timer/Counters 2

16-bit Timer/Counters 1

PWM channels 4

RC Oscillator +/-3%

VREF Bandgap

Operating voltage 2.7 - 5.5V

Max operating frequency 16MHz

Temperature range -55°C to +125°C

JTAG Yes

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

10

The two tables below relates the alternate functions of Port A to the overriding signals shown in the figure
in section Alternate Port Functions.
Table 17-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal Name PA7/ADC7 PA6/ADC6 PA5/ADC5 PA4/ADC4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

Table 17-5. Overriding Signals for Alternate Functions in PA3:PA0

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PA0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

17.3.2. Alternate Functions of Port B
The Port B pins with alternate functions are shown in the table below:

Table 17-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

81

Port Pin Alternate Functions

PB3 AIN1 (Analog Comparator Negative Input)
OC0 (Timer/Counter0 Output Compare Match Output)

PB2 AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PB0 T0 (Timer/Counter0 External Counter Input)
XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:

• SCK – Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave, this pin is
configured as an input regardless of the setting of DDB7. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTB7 bit.

• MISO – Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master, this pin is
configured as an input regardless of the setting of DDB6. When the SPI is enabled as a Slave, the data
direction of this pin is controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTB6 bit.

• MOSI – Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave, this pin is
configured as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTB5 bit.

• SS – Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless
of the setting of DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB4. When the pin is forced by the
SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

• AIN1/OC0 – Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog comparator.

OC0, Output Compare Match output: The PB3 pin can serve as an external output for the Timer/Counter0
Compare Match. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function.
The OC0 pin is also the output pin for the PWM mode timer function.

• AIN0/INT2 – Port B, Bit 2

AIN0, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up switched
off to avoid the digital port function from interfering with the function of the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the MCU.

• T1 – Port B, Bit 1

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

82

17.4.8. PORTC – The Port C Data Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  PORTC
Offset:  0x15
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x35

Bit 7 6 5 4 3 2 1 0
 PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – PORTCn: Port C Data [n = 7:0]

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

96

19. 16-bit Timer/Counter1

19.1. Features
• True 16-bit Design (i.e., allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

19.2. Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave
generation, and signal timing measurement. Most register and bit references in this section are written in
general form. A lower case “n” replaces the Timer/Counter number, and a lower case “x” replaces the
Output Compare unit channel. However, when using the register or bit defines in a program, the precise
form must be used i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in the following figure. For the actual
placement of I/O pins, refer to Pin Configurations. CPU accessible I/O Registers, including I/O bits and
I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the Register
Description.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

105

19.11.5. OCR1AL – Output Compare Register 1 A Low byte
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  OCR1AL
Offset:  0x2A
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x4A

Bit 7 6 5 4 3 2 1 0
 OCR1AL[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – OCR1AL[7:0]: Output Compare 1 A Low byte
The Output Compare Registers contain a 16-bit value that is continuously compared with the counter
value (TCNT1). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. Refer to
Accessing 16-bit Registers for details.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

132

19.11.8. OCR1BH – Output Compare Register 1 B High byte

Name:  OCR1BH
Offset:  0x29
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x49

Bit 7 6 5 4 3 2 1 0
 OCR1BH[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – OCR1BH[7:0]: Output Compare 1 B High byte
Refer to OCR1AL.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

135

19.11.10. ICR1H – Input Capture Register 1 High byte

Name:  ICR1H
Offset:  0x27
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x47

Bit 7 6 5 4 3 2 1 0
 ICR1H[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – ICR1H[7:0]: Input Capture 1 High byte
Refer to ICR1L.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

137

Compare Match will be missed, resulting in incorrect waveform generation. Similarly, do not write the
TCNT2 value equal to BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit
in Normal mode. The OC2 Register keeps its value even when changing between waveform generation
modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value. Changing the
COM21:0 bits will take effect immediately.

20.6. Compare Match Output Unit
The Compare Output mode (COM21:0) bits have two functions. The waveform generator uses the
COM21:0 bits for defining the Output Compare (OC2) state at the next Compare Match. Also, the
COM21:0 bits control the OC2 pin output source. The figure below shows a simplified schematic of the
logic affected by the COM21:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown
in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the
COM21:0 bits are shown. When referring to the OC2 state, the reference is for the internal OC2 Register,
not the OC2 pin.

Figure 20-4. Compare Match Output Unit, Schematic

PORT

DDR

D Q

D Q

OCn
PinOCn

D QWaveform
Genera tor

COMn1
COMn0

0

1

D
AT

AB
U

S

FOCn

clkI/O

The general I/O port function is overridden by the Output Compare (OC2) from the waveform generator if
either of the COM21:0 bits are set. However, the OC2 pin direction (input or output) is still controlled by
the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin
(DDR_OC2) must be set as output before the OC2 value is visible on the pin. The port override function is
independent of the Waveform Generation mode.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

144

The design of the Output Compare Pin logic allows initialization of the OC2 state before the output is
enabled. Note that some COM21:0 bit settings are reserved for certain modes of operation. See Register
Description.

20.6.1. Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM21:0 bits differently in normal, CTC, and PWM modes. For all
modes, setting the COM21:0 = 0 tells the waveform generator that no action on the OC2 Register is to be
performed on the next Compare Match. For compare output actions in the non-PWM modes refer to table
Compare Output Mode, Non-PWM Mode. For fast PWM mode, refer to table Compare Output Mode, Fast
PWM Mode, and for phase correct PWM refer to table Compare Output Mode, Phase Correct PWM
Mode.

A change of the COM21:0 bits state will have effect at the first Compare Match after the bits are written.
For non-PWM modes, the action can be forced to have immediate effect by using the FOC2 strobe bits.

20.7. Modes of Operation
The mode of operation (i.e., the behavior of the Timer/Counter and the Output Compare pins) is defined
by the combination of the Waveform Generation mode (WGM21:0) and Compare Output mode
(COM21:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform
Generation mode bits do. The COM21:0 bits control whether the PWM output generated should be
inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM21:0 bits control whether
the output should be set, cleared, or toggled at a Compare Match (refer to Compare Match Output Unit).

For detailed timing information refer to Timer/Counter Timing Diagrams.

20.7.1. Normal Mode
The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting direction
is always up (incrementing), and no counter clear is performed. The counter simply overruns when it
passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal
operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2
becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer
resolution can be increased by software. There are no special cases to consider in the Normal mode, a
new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Output
Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of
the CPU time.

20.7.2. Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches
the OCR2. The OCR2 defines the top value for the counter, hence also its resolution. This mode allows
greater control of the Compare Match output frequency. It also simplifies the operation of counting
external events.

The timing diagram for the CTC mode is shown in the figure below. The counter value (TCNT2) increases
until a Compare Match occurs between TCNT2 and OCR2, and then counter (TCNT2) is cleared.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

145

Table 23-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud
Rate(1)

Equation for Calculating UBRR
Value

Asynchronous Normal
mode (U2X = 0) BAUD = �OSC16 ���� + 1 ���� = �OSC16BAUD − 1
Asynchronous Double
Speed mode (U2X = 1) BAUD = �OSC8 ���� + 1 ���� = �OSC8BAUD − 1
Synchronous Master mode BAUD = �OSC2 ����+1 ���� = �OSC2BAUD − 1

Note:  1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps).

fOSC System oscillator clock frequency.

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095).

Some examples of UBRR values for some system clock frequencies are found in Table 23-9.

23.3.2. Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer
rate for asynchronous communication. Note however that the Receiver will in this case only use half the
number of samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more
accurate baud rate setting and system clock are required when this mode is used.

For the Transmitter, there are no downsides.

23.3.3. External Clock
External clocking is used by the synchronous slave modes of operation. The description in this section
refers to Figure 23-2.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of
meta-stability. The output from the synchronization register must then pass through an edge detector
before it can be used by the Transmitter and Receiver. This process introduces a two CPU clock period
delay and therefore the maximum external XCK clock frequency is limited by the following equation:�XCK < �OSC4
The value of fosc depends on the stability of the system clock source. It is therefore recommended to add
some margin to avoid possible loss of data due to frequency variations.

23.3.4. Synchronous Clock Operation
When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or
clock output (Master). The dependency between the clock edges and data sampling or data change is the
same. The basic principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the
edge the data output (TxD) is changed.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

194

Table 23-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X = 0)

D
(Data+Parity Bit)

Rslow [%] Rfast [%] Max. Total Error [%] Recommended Max Receiver Error
[%]

5 93.20 106.67 +6.67/-6.8 ±3.0

6 94.12 105.79 +5.79/-5.88 ±2.5

7 94.81 105.11 +5.11/-5.19 ±2.0

8 95.36 104.58 +4.58/-4.54 ±2.0

9 95.81 104.14 +4.14/-4.19 ±1.5

10 96.17 103.78 +3.78/-3.83 ±1.5

Table 23-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X = 1)

D
(Data+Parity Bit)

Rslow [%] Rfast [%] Max Total Error [%] Recommended Max
Receiver Error [%]

5 94.12 105.66 +5.66/-5.88 ±2.5

6 94.92 104.92 +4.92/-5.08 ±2.0

7 95.52 104.35 +4.35/-4.48 ±1.5

8 96.00 103.90 +3.90/-4.00 ±1.5

9 96.39 103.53 +3.53/-3.61 ±1.5

10 96.70 103.23 +3.23/-3.30 ±1.0

The recommendations of the maximum Receiver baud rate error was made under the assumption that
the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the Receivers Baud Rate error. The Receiver’s system clock (XTAL)
will always have some minor instability over the supply voltage range and the temperature range. When
using a crystal to generate the system clock, this is rarely a problem, but for a resonator the system clock
may differ more than 2% depending of the resonators tolerance. The second source for the error is more
controllable. The baud rate generator can not always do an exact division of the system frequency to get
the baud rate wanted. In this case an UBRR value that gives an acceptable low error can be used if
possible.

23.9. Multi-Processor Communication Mode
Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering function of
incoming frames received by the USART Receiver. Frames that do not contain address information will
be ignored and not put into the receive buffer. This effectively reduces the number of incoming frames
that has to be handled by the CPU, in a system with multiple MCUs that communicate via the same serial
bus. The Transmitter is unaffected by the MPCM setting, but has to be used differently when it is a part of
a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if
the frame contains data or address information. If the Receiver is set up for frames with nine data bits,
then the ninth bit (RXB8) is used for identifying address and data frames. When the frame type bit (the

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

205

24.6.2. Master Transmitter Mode
In the Master Transmitter (MT) mode, a number of data bytes are transmitted to a Slave Receiver, see
figure below. In order to enter a Master mode, a START condition must be transmitted. The format of the
following address packet determines whether MT or Master Receiver (MR) mode is to be entered: If SLA
+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 24-11. Data Transfer in Master Transmitter Mode

Device 1
MASTER

TRANSMITTER

Device 2
SLA VE

RECEIVER
Device 3 Device n

SD A

SCL

........ R1 R2

VCC

A START condition is sent by writing a value to the TWI Control Register (TWCR) of the type
TWCR=1x10x10x:

• The TWI Enable bit (TWCR.TWEN) must be written to '1' to enable the 2-wire Serial Interface
• The TWI Start Condition bit (TWCR.TWSTA) must be written to '1' to transmit a START condition
• The TWI Interrupt Flag (TWCR.TWINT) must be written to '1' to clear the flag.

The TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and
the status code in TWSR will be 0x08 (see Status Code table below). In order to enter MT mode, SLA+W
must be transmitted. This is done by writing SLA+W to the TWI Data Register (TWDR). Thereafter, the
TWCR.TWINT Flag should be cleared (by writing a '1' to it) to continue the transfer. This is accomplished
by writing a value to TWRC of the type TWCR=1x00x10x.

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is set again
and a number of status codes in TWSR are possible. Possible status codes in Master mode are 0x18,
0x20, or 0x38. The appropriate action to be taken for each of these status codes is detailed in the Status
Code table below.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by
writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be
discarded, and the Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR,
the TWINT bit should be cleared (by writing '1' to it) to continue the transfer. This is accomplished by
writing again a value to TWCR of the type TWCR=1x00x10x.

This scheme is repeated until the last byte has been sent and the transfer is ended, either by generating
a STOP condition or a by a repeated START condition. A repeated START condition is accomplished by
writing a regular START value TWCR=1x10x10x. A STOP condition is generated by writing a value of the
type TWCR=1x01x10x.

After a repeated START condition (status code 0x10), the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables the Master

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

232

1. The transfer must be initiated.
2. The EEPROM must be instructed what location should be read.
3. The reading must be performed.
4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct the
Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data must be read
from the Slave, implying the use of the MR mode. Thus, the transfer direction must be changed. The
Master must keep control of the bus during all these steps, and the steps should be carried out as an
atomical operation. If this principle is violated in a multimaster system, another Master can alter the data
pointer in the EEPROM between steps 2 and 3, and the Master will read the wrong data location. Such a
change in transfer direction is accomplished by transmitting a REPEATED START between the
transmission of the address byte and reception of the data. After a REPEATED START, the Master keeps
ownership of the bus. The following figure shows the flow in this transfer.

Figure 24-19. Combining Several TWI Modes to Access a Serial EEPROM
Master Transmitter Master Receiv er

S = ST AR T Rs = REPEA TED ST AR T P = ST OP

Transmitted from master to sla v e Transmitted from sla v e to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

24.7. Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one
or more of them. The TWI standard ensures that such situations are handled in such a way that one of
the masters will be allowed to proceed with the transfer, and that no data will be lost in the process. An
example of an arbitration situation is depicted below, where two masters are trying to transmit data to a
Slave Receiver.

Figure 24-20. An Arbitration Example

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLA VE

RECEIVER
Device n

SD A

SCL

........ R1 R2

VCC

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this case,
neither the Slave nor any of the masters will know about the bus contention.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

245

Table 25-2. ACIS[1:0] Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by clearing its
Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the bits are changed.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

257

The JTAG programming capability supports:

• Flash programming and verifying
• EEPROM programming and verifying
• Fuse programming and verifying
• Lock bit programming and verifying

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a security
feature that ensures no back-door exists for reading out the content of a secured device.

The details on programming through the JTAG interface and programming specific JTAG instructions are
given in the section Programming Via the JTAG Interface.

Related Links
Programming Via the JTAG Interface on page 345

27.9. Bibliography
For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture,
IEEE, 1993

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992

27.10. IEEE 1149.1 (JTAG) Boundary-scan

27.10.1. Features
• JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

27.10.2. System Overview
The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital I/O
pins, as well as the boundary between digital and analog logic for analog circuitry having off-chip
connections. At system level, all ICs having JTAG capabilities are connected serially by the TDI/TDO
signals to form a long Shift Register. An external controller sets up the devices to drive values at their
output pins, and observe the input values received from other devices. The controller compares the
received data with the expected result. In this way, Boundary-scan provides a mechanism for testing
interconnections and integrity of components on Printed Circuits Boards by using the four TAP signals
only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and
EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be used for testing the
Printed Circuit Board. Initial scanning of the data register path will show the ID-code of the device, since
IDCODE is the default JTAG instruction. It may be desirable to have the AVR device in reset during test
mode. If not reset, inputs to the device may be determined by the scan operations, and the internal
software may be in an undetermined state when exiting the test mode. Entering Reset, the outputs of any
Port Pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If needed,

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

287

• To protect only the Application Flash section from a software update by the MCU
• Allow software update in the entire Flash

The Boot Lock bits can be set in software and in Serial or Parallel Programming mode, but they can be
cleared by a Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit
mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Table 28-2. Boot Lock Bit0 Protection Modes (Application Section)

BLB0
Mode

BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and LPM executing
from the Boot Loader section is not allowed to read from the Application
section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not allowed to read from
the Application section. If Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from the Application
section.

Note:  “1” means unprogrammed, “0” means programmed.

Table 28-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)

BLB1
Mode

BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, and LPM executing
from the Application section is not allowed to read from the Boot Loader
section. If Interrupt Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed to read from the
Boot Loader section. If Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from the Boot Loader
section.

Note:  “1” means unprogrammed, “0” means programmed.

28.6. Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may be initiated
by a trigger such as a command received via USART, or SPI interface. Alternatively, the Boot Reset Fuse
can be programmed so that the Reset Vector is pointing to the Boot Flash start address after a reset. In
this case, the Boot Loader is started after a reset. After the application code is loaded, the program can
start executing the application code. The fuses cannot be changed by the MCU itself. This means that

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

315

Table 29-12. Number of Words in a Page and number of Pages in the EEPROM

EEPROM Size Page Size PCWORD Number of Pages PCPAGE EEAMSB

1Kbyte 4 bytes EEA[1:0] 256 EEA[9:2] 9

29.7. Parallel Programming

29.7.1. Enter Programming Mode
The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5 - 5.5V between VCC and GND, and wait at least 100µs.
2. Set RESET to “0” and toggle XTAL1 at least 6 times
3. Set the Prog_enable pins listed in Table 29-8 to “0000” and wait at least 100ns.
4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100ns after +12V has been

applied to RESET, will cause the device to fail entering Programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply qualified
XTAL1 pulses. In such cases, the following algorithm should be followed:

1. Set Prog_enable pins listed in Table 29-8 to “0000”.
2. Apply 4.5 - 5.5V between VCC and GND simultaneously as 11.5 - 12.5V is applied to RESET.
3. Wait 100μs.
4. Re-program the fuses to ensure that External Clock is selected as clock source (CKSEL3:0 =

0b0000). If Lock bits are programmed, a Chip Erase command must be executed before changing
the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to 0b0.
6. Entering Programming mode with the original algorithm, as described above.

29.7.2. Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations.
• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the EESAVE

Fuse is programmed) and Flash after a Chip Erase.
• Address high byte needs only be loaded before programming or reading a new 256 word window in

Flash or 256byte EEPROM. This consideration also applies to Signature bytes reading.

29.7.3. Chip Erase
The Chip Erase will erase the Flash, the SRAM and the EEPROM memories plus Lock bits. The Lock bits
are not reset until the program memory has been completely erased. The Fuse bits are not changed. A
Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed.

Note:  The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”:

1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “1000 0000”. This is the command for Chip Erase.
4. Give XTAL1 a positive pulse. This loads the command.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

333

1. Step A: Load Command “0100 0000”.
2. Step C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.

Figure 29-5. Programming the FUSES Waveforms

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40DATA DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

BS2

29.7.10. Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (Please refer to Programming the Flash for
details on Command and Data loading):

1. Step A: Load Command “0010 0000”.
2. Step C: Load Data Low Byte. Bit n = “0” programs the Lock bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

29.7.11. Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (Please refer to Programming the Flash for
details on Command loading):

1. Step A: Load Command “0000 0100”.
2. Set OE to “0”, BS2 to “0”, and BS1 to “0”. The status of the Fuse Low bits can now be read at DATA

(“0” means programmed).
3. Set OE to “0”, BS2 to “1”, and BS1 to “1”. The status of the Fuse High bits can now be read at

DATA (“0” means programmed).

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

338

Programming Instruction Set is shown in the following table. The state machine sequence when shifting in
the programming commands is illustrated in the last figure in this section.

Figure 29-14. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

Table 29-17. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x =
don’t care

Instruction TDI sequence TDO sequence Notes

1a. Chip erase 0100011_10000000
0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for chip erase complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

349

