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10.7. Reset and Interrupt Handling
The Atmel AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are assigned
individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the
Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may
be automatically disabled when Boot Lock Bits BLB02 or BLB12 are programmed. This feature improves
software security. See the section Memory Programming for details.

The lowest addresses in the Program memory space are by default defined as the Reset and Interrupt
Vectors. The complete list of Vectors is shown in Interrupts . The list also determines the priority levels of
the different interrupts. The lower the address the higher is the priority level. RESET has the highest
priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the
start of the boot Flash section by setting the Interrupt Vector Select (IVSEL) bit in the General Interrupt
Control Register (GICR). Refer to Interrupts for more information. The Reset Vector can also be moved to
the start of the boot Flash section by programming the BOOTRST Fuse, see Boot Loader Support –
Read-While-Write Self-Programming.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The
user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then
interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt
instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt
Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to
execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt
Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt
condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and
remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding Interrupt
Flag(s) will be set and remembered until the global interrupt enable bit is set, and will then be executed by
order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do
not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled,
the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored
when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No
interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.
The following example shows how this can be used to avoid interrupts during the timed EEPROM write
sequence.

Assembly Code Example

in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write
sbi EECR, EEWE
out SREG, r16 ; restore SREG value (I-bit)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

27



13.2. Idle Mode
When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping
the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters,
Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clkCPU and
clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the
Timer Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator
interrupt is not required, the Analog Comparator can be powered down by setting the ACD bit in the
Analog Comparator Control and Status Register – ACSR. This will reduce power consumption in Idle
mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

13.3. ADC Noise Reduction Mode
When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise
Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the Two-wire Serial
Interface address watch, Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep
mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC
is enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion
Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial
Interface address match interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an
External level interrupt on INT0 or INT1, or an external interrupt on INT2 can wake up the MCU from ADC
Noise Reduction mode.

13.4. Power-down Mode
When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode.
In this mode, the External Oscillator is stopped, while the External Interrupts, the Two-wire Serial
Interface address watch, and the Watchdog continue operating (if enabled). Only an External Reset, a
Watchdog Reset, a Brownout Reset, a Two-wire Serial Interface address match interrupt, an External
Level Interrupt on INT0 or INT1, or an External Interrupt on INT2 can wake up the MCU. This sleep mode
basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level
must be held for some time to wake up the MCU. Refer to External Interrupts for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the
wake-up becomes effective. This allows the clock to restart and become stable after having been
stopped. The wake-up period is defined by the same CKSEL Fuses that define the Reset Time-out
period, as described in Clock Sources.

Related Links
External Interrupts on page 69
Clock Sources on page 40

13.5. Power-save Mode
When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode.
This mode is identical to Power-down, with one exception:

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

48



Figure 14-1. Reset Logic

MCU Control and S ta tus
Regis te r (MCUCSR)

Brown-Out
Rese t CircuitBODEN

BODLEVEL

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

BO
R

F
EX

TR
F

PO
R

F

DATA BUS

Clock
Genera tor

SPIKE
FILTER

Pull-up Res is tor

Watchdog
Oscilla tor

SUT[1:0]

JTAG Reset
Register

JT
R

F

Related Links
IEEE 1149.1 (JTAG) Boundary-scan on page 287

14.2.1. Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is
defined in the table in System and Reset Characteristics. The POR is activated whenever VCC is below
the detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a
failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on
Reset threshold voltage invokes the delay counter, which determines how long the device is kept in
RESET after VCC rise. The RESET signal is activated again, without any delay, when VCC decreases
below the detection level.
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the TCNTn value can be accessed by the CPU, independent of whether clkTn is present or not. A CPU
write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0)
located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close
connections between how the counter behaves (counts) and how waveforms are generated on the Output
Compare Outputs OCnx. For more details about advanced counting sequences and waveform
generation, see Modes of Operation.

The Timer/Counter Overflow (TOVn) flag is set according to the mode of operation selected by the
WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

19.6. Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a
timestamp indicating time of occurrence. The external signal indicating an event, or multiple events, can
be applied via the ICPn pin or alternatively, via the Analog Comparator unit. The time-stamps can then be
used to calculate frequency, duty-cycle, and other features of the signal applied. Alternatively the time-
stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram below. The elements of the block diagram that
are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit names
indicates the Timer/Counter number.

Figure 19-3. Input Capture Unit Block Diagram
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When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively on the
Analog Comparator Output (ACO), and this change confirms to the setting of the edge detector, a capture
will be triggered. When a capture is triggered, the 16-bit value of the counter (TCNTn) is written to the
Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at the same system clock as the
TCNTn value is copied into ICRn Register. If enabled (TICIEn = 1), the Input Capture Flag generates an
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Figure 19-12. Timer/Counter Timing Diagram, no Prescaling.
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The next figure shows the same timing data, but with the prescaler enabled.

Figure 19-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)
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19.11. Register Description
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small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2 and
TCNT2.

Figure 20-6. Fast PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM21:0 to 3. The actual OC2 value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2 Register at
the Compare Match between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:�OCnPWM = �clk_I/O� ⋅ 256
The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to
toggle its logical level on each Compare Match (COM21:0 = 1). The waveform generated will have a
maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

20.7.4. Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output
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Bits 2:0 – CS2n: Clock Select [n = 2:0]
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 20-6. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/32 (From prescaler)

1 0 0 clkI/O/64 (From prescaler)

1 0 1 clkI/O/128 (From prescaler)

1 1 0 clkI/O/256 (From prescaler)

1 1 1 clkI/O/1024 (From prescaler)
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Figure 21-10. Timer/Counter Timing Diagram, Setting of OCF0, with Prescaler (fclk_I/O/8)
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The next figure shows the setting of OCF0 and the clearing of TCNT0 in CTC mode.

Figure 21-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (fclk_I/O/8)
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21.9. Register Description
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   ldi r16,(1<<URSEL) | (1<<USBS) | (1<<UCSZ1)
   out UCSRC,r16
   :.

C Code Example(1)

:.
   /* Set UBRRH to 2 */
   UBRRH = 0x02;
   :.
   /* Set the USBS and the UCSZ1 bit to one, and */
   /* the remaining bits to zero. */
   UCSRC = (1<<URSEL) | (1<<USBS) | (1<<UCSZ1);
   :.

Note:  1. See About Code Examples.

As the code examples illustrate, write accesses of the two registers are relatively
unaffected of the sharing of I/O location.

Related Links
About Code Examples on page 19

23.10.2. Read Access
Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. However, in
most applications, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once returns the UBRRH
Register contents. If the register location was read in previous system clock cycle, reading the register in
the current clock cycle will return the UCSRC contents. Note that the timed sequence for reading the
UCSRC is an atomic operation. Interrupts must therefore be controlled (e.g., by disabling interrupts
globally) during the read operation.

The following code example shows how to read the UCSRC Register contents.

Assembly Code Example(1)

USART_ReadUCSRC:
   ; Read UCSRC
   in r16,UBRRH
   in r16,UCSRC
   ret

C Code Example(1)

unsigned char USART_ReadUCSRC( void )
{
   unsigned char ucsrc;
   /* Read UCSRC */
   ucsrc = UBRRH;
   ucsrc = UCSRC;
   return ucsrc;
}

Note:  1. See About Code Examples.

The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as
an ordinary register, as long as the previous instruction did not access the register
location.

Related Links
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Status
Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Application Software Response Next Action Taken by TWI Hardware
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NT
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becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free
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Figure 26-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)
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Figure 26-5. ADC Timing Diagram, Single Conversion
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Figure 26-6. ADC Timing Diagram, Auto Triggered Conversion
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Figure 26-7. ADC Timing Diagram, Free Running Conversion
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Table 26-1. ADC Conversion Time

Condition Sample & Hold 
(Cycles from Start of Conversion)

Conversion Time 
(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

Normal conversions, differential 1.5/2.5 13/14

26.4.1. Differential Gain Channels
When using differential gain channels, certain aspects of the conversion need to be taken into
consideration.

Differential conversions are synchronized to the internal clock CKADC2 equal to half the ADC clock. This
synchronization is done automatically by the ADC interface in such a way that the sample-and-hold
occurs at a specific edge of CKADC2. A conversion initiated by the user (that is, all single conversions, and
the first free running conversion) when CKADC2 is low will take the same amount of time as a single ended
conversion (13 ADC clock cycles from the next prescaled clock cycle). A conversion initiated by the user
when CKADC2 is high will take 14 ADC clock cycles due to the synchronization mechanism. In free
running mode, a new conversion is initiated immediately after the previous conversion completes, and
since CKADC2 is high at this time, all automatically started (that is, all but the first) free running
conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may be
subjected to non-linear amplification. An external low-pass filter should be used if the input signal
contains higher frequency components than the gain stage bandwidth. Note that the ADC clock frequency
is independent of the gain stage bandwidth limitation. For example the ADC clock period may be 6μs,
allowing a channel to be sampled at 12kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC must be
switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset before the
conversion is started. Since the gain stage is dependent of a stable ADC clock prior to the conversion,
this conversion will not be valid. By disabling and then re-enabling the ADC between each conversion
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(writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are performed. The result from
the extended conversions will be valid. Refer to Prescaling and Conversion Timing for timing details.

26.5. Changing Channel or Reference Selection
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to
which the CPU has random access. This ensures that the channels and reference selection only takes
place at a safe point during the conversion. The channel and reference selection is continuously updated
until a conversion is started. Once the conversion starts, the channel and reference selection is locked to
ensure a sufficient sampling time for the ADC. Continuous updating resumes in the last ADC clock cycle
before the conversion completes (ADIF in ADCSRA is set). Note that the conversion starts on the
following rising ADC clock edge after ADSC is written. The user is thus advised not to write new channel
or reference selection values to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special care must
be taken when updating the ADMUX Register, in order to control which conversion will be affected by the
new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX
Register is changed in this period, the user cannot tell if the next conversion is based on the old or the
new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

Special care should be taken when changing differential channels. Once a differential channel has been
selected, the gain stage may take as much as 125μs to stabilize to the new value. Thus conversions
should not be started within the first 125μs after selecting a new differential channel. Alternatively,
conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing ADC
reference (by changing the REFS1:0 bits in ADMUX).

26.5.1. ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure that the
correct channel is selected:

• In Single Conversion mode, always select the channel before starting the conversion. The channel
selection may be changed one ADC clock cycle after writing one to ADSC. However, the simplest
method is to wait for the conversion to complete before changing the channel selection.

• In Free Running mode, always select the channel before starting the first conversion. The channel
selection may be changed one ADC clock cycle after writing one to ADSC. However, the simplest
method is to wait for the first conversion to complete, and then change the channel selection. Since
the next conversion has already started automatically, the next result will reflect the previous
channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accuracy due to
the required settling time for the automatic offset cancellation circuitry. The user should preferably
disregard the first conversion result.
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Bit Number Signal Name Module

66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
(Observe-only)65 OSCCK

64 RCCK

63 OSC32CK

62 TWIEN TWI

61 PD0.Data Port D

60 PD0.Control

59 PD0.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

46 PD5.Data

45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PD6.Pullup_Enable

40 PD7.Data

39 PD7.Control

38 PD7.Pullup_Enable
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Figure 28-2. Memory Sections
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Related Links
ATmega32A Boot Loader Parameters on page 323

28.5. Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader
has two separate sets of Boot Lock bits which can be set independently. This gives the user a unique
flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU
• To protect only the Boot Loader Flash section from a software update by the MCU
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Bit 7 6 5 4 3 2 1 0 
Rd – – – – – – LB2 LB1BLB01BLB02BLB11BLB12–– LB2 LB1

The algorithm for reading the Fuse Low bits is similar to the one described above for reading the Lock
Bits. To read the Fuse Low bits, load the Z-pointer with 0x0000 and set the BLBSET and SPMEN bits in
SPMCR. When an LPM instruction is executed within three cycles after the BLBSET and SPMEN bits are
set in the SPMCR, the value of the Fuse Low bits (FLB) will be loaded in the destination register as
shown below. Refer to table Fuse Low Byte in section Fuse Bits for a detailed description and mapping of
the fuse low bits.

Bit 7 6 5 4 3 2 1 0 
Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Similarly, when reading the Fuse High bits, load 0x0003 in the Z-pointer. When an LPM instruction is
executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse High bits (FHB) will be loaded in the destination register as shown below. Refer to table Fuse High
Byte in section Fuse Bits for detailed description and mapping of the fuse high bits.

Bit 7 6 5 4 3 2 1 0 
Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Fuse and Lock bits that are programmed read as '0'. Fuse and Lock bits that are unprogrammed, will read
as '1'.

28.8.10. Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is too low for
the CPU and the Flash to operate properly. These issues are the same as for board level systems using
the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a regular
write sequence to the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can
execute instructions incorrectly, if the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to
prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be
done by enabling the internal Brown-out Detector (BOD) if the operating voltage matches the
detection level. If not, an external low VCC reset protection circuit can be used. If a reset occurs
while a write operation is in progress, the write operation will be completed provided that the power
supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will prevent the
CPU from attempting to decode and execute instructions, effectively protecting the SPMCR
Register and thus the Flash from unintentional writes.

28.8.11. Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. The following table shows the typical
programming time for Flash accesses from the CPU.

Table 28-5. SPM Programming Time(1)

Symbol Min. Programming Time Max. Programming Time

Flash write (Page Erase, Page Write, and write Lock bits
by SPM)

3.7ms 4.5ms

Note:  1. Minimum and maximum programming time is per individual operation.
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Figure 29-3. Programming the Flash Waveforms
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Note:  “XX” is don’t care. The letters refer to the programming description above.

29.7.5. Programming the EEPROM
The EEPROM is organized in pages, see Table 29-12, in the Page Size section. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be programmed
simultaneously. The programming algorithm for the EEPROM data memory is as follows (For details on
Command, Address and Data loading, refer to Programming the Flash):

1. Step A: Load Command “0001 0001”.
2. Step G: Load Address High Byte (0x00 - 0xFF).
3. Step B: Load Address Low Byte (0x00 - 0xFF).
4. Step C: Load Data (0x00 - 0xFF).
5. Step E: Latch data (give PAGEL a positive pulse).
6. Step K:Repeat 3 through 5 until the entire buffer is filled.
7. Step L: Program EEPROM page

7.1. Set BS1 to “0”.
7.2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes

low.
7.3. Wait until to RDY/BSY goes high before programming the next page. Refer to the figure

below for signal waveforms.
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Figure 29-17. Virtual Flash Page Read Register
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29.10.13. Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 29-17.

29.10.14. Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.
2. Enter instruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Programming Enable

Register.

29.10.15. Leaving Programming Mode
1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.
3. Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the programming Enable

Register.
4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

29.10.16. Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start chip erase using programming instruction 1a.
3. Poll for chip erase complete using programming instruction 1b, or wait for tWLRH_CE (refer to table

Command Byte Bit Coding in section Parallel Programming Parameters, Pin Mapping, and
Commands).

Related Links
Parallel Programming Characteristics on page 339

29.10.17. Programming the Flash
Before programming the Flash a Chip Erase must be performed. See Performing Chip Erase.
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Related Links
Parallel Programming Characteristics on page 339

29.10.22. Programming the Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Lock bit write using programming instruction 7a.
3. Load data using programming instructions 7b. A bit value of “0” will program the corresponding lock

bit, a “1” will leave the lock bit unchanged.
4. Write Lock bits using programming instruction 7c.
5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

Related Links
Parallel Programming Characteristics on page 339

29.10.23. Reading the Fuses and Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse/Lock bit read using programming instruction 8a.
3. – To read all Fuses and Lock bits, use programming instruction 8e.

– To only read Fuse high byte, use programming instruction 8b.
– To only read Fuse low byte, use programming instruction 8c.
– To only read Lock bits, use programming instruction 8d.

29.10.24. Reading the Signature Bytes
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Signature byte read using programming instruction 9a.
3. Load address 0x00 using programming instruction 9b.
4. Read first signature byte using programming instruction 9c.
5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third signature

bytes, respectively.

29.10.25. Reading the Calibration Byte
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Calibration byte read using programming instruction 10a.
3. Load address 0x00 using programming instruction 10b.
4. Read the calibration byte using programming instruction 10c.
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Symbol Parameter Condition Min Typ Max Units

VOL Output Low Voltage(3)

(Ports A,B,C,D)
IOL = 20mA, VCC = 5V

IOL = 10mA, VCC = 3V

0.7

0.5

V

V

VOH Output High Voltage(4)

(Ports A,B,C,D)
IOH = -20mA, VCC = 5V

IOH = -10mA, VCC = 3V

4.2

2.2

V

V

IIL Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 μA

IIH Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 μA

RRST Reset Pull-up Resistor 30 60 85 kΩ

Rpu I/O Pin Pull-up Resistor 20 50 kΩ

ICC Power Supply Current Active 1MHz, VCC = 3V 0.6 mA

Active 4MHz, VCC = 3V 2.1 5 mA

Active 8MHz, VCC = 5V 7.5 15 mA

Idle 1MHz, VCC = 3V 0.2 mA

Idle 4MHz, VCC = 3V 0.6 2.5 mA

Idle 8MHz, VCC = 5V 2.8 8 mA

Power-down mode(5) WDT enabled, VCC = 3V <10 20 μA

WDT disabled, VCC = 3V <1 10 μA

VACIO Analog Comparator 
Input Offset Voltage

VCC = 5V

Vin = VCC/2

40 mV

IACLK Analog Comparator 
Input Leakage Current

VCC = 5V

Vin = VCC/2

-50 50 nA

tACPD Analog Comparator 
Propagation Delay

VCC = 2.7V 

VCC = 4.0V

750

500

ns

Note: 
1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC =

3V) under steady state conditions (non-transient), the following must be observed:

PDIP Package:

3.1. The sum of all IOL, for all ports, should not exceed 200mA.
3.2. The sum of all IOL, for ports A0 - A7 should not exceed 100mA.
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