
Microchip Technology - ATMEGA32A-MN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 44-VFQFN Exposed Pad

Supplier Device Package 44-VQFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega32a-mn

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32a-mn-4407241
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3. Ordering Information
Speed (MHz) Power Supply Ordering Code(2) Package(1) Operational Range

16 2.7 - 5.5V

ATmega32A-AU
ATmega32A-AUR(3)

ATmega32A-PU

ATmega32A-MU

ATmega32A-MUR(3)

44A
44A

40P6

44M1

44M1

Industrial (-40oC to 85oC)

ATmega32A-AN
ATmega32A-ANR(3)

ATmega32A-MN

ATmega32A-MNR(3)

44A
44A

44M1

44M1

Extended (-40oC to 105oC)(4)

Note: 
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for

detailed ordering information and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances

(RoHS directive). Also Halide free and fully Green.
3. Tape and Reel
4. See characterization specifications at 105°C

Package Type

44A 44-lead, 10 × 10 × 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)

44M1 44-pad, 7 × 7 × 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

11

T1, Timer/Counter1 Counter Source.

• T0/XCK – Port B, Bit 0

T0, Timer/Counter0 Counter Source.

XCK, USART External Clock. The Data Direction Register (DDB0) controls whether the clock is output
(DDB0 set) or input (DDB0 cleared). The XCK pin is active only when the USART operates in
Synchronous mode.

The tables below relate the alternate functions of Port B to the overriding signals shown in the figure in
section Alternate Port Functions. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal,
while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 17-7. Overriding Signals for Alternate Functions in PB7:PB4

Signal
Name

PB7/SCK PB6/MISO PB5/MOSI PB4/SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB7 • PUD PORTB6 • PUD PORTB5 • PUD PORTB4 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPI SS

AIO – – – –

Table 17-8. Overriding Signals for Alternate Functions in PB3:PB0

Signal
Name

PB3/OC0/AIN1 PB2/INT2/AIN0 PB1/T1 PB0/T0/XCK

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0 ENABLE 0 0 UMSEL

PVOV OC0 0 0 XCK OUTPUT

DIEOE 0 INT2 ENABLE 0 0

DIEOV 0 1 0 0

DI - INT2 INPUT T1 INPUT XCK INPUT/T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

83

Figure 19-12. Timer/Counter Timing Diagram, no Prescaling.

TOVn (FPWM)
and ICF n (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O

The next figure shows the same timing data, but with the prescaler enabled.

Figure 19-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)
and ICF n (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

19.11. Register Description

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

124

Compare Match will be missed, resulting in incorrect waveform generation. Similarly, do not write the
TCNT2 value equal to BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit
in Normal mode. The OC2 Register keeps its value even when changing between waveform generation
modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value. Changing the
COM21:0 bits will take effect immediately.

20.6. Compare Match Output Unit
The Compare Output mode (COM21:0) bits have two functions. The waveform generator uses the
COM21:0 bits for defining the Output Compare (OC2) state at the next Compare Match. Also, the
COM21:0 bits control the OC2 pin output source. The figure below shows a simplified schematic of the
logic affected by the COM21:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown
in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the
COM21:0 bits are shown. When referring to the OC2 state, the reference is for the internal OC2 Register,
not the OC2 pin.

Figure 20-4. Compare Match Output Unit, Schematic

PORT

DDR

D Q

D Q

OCn
PinOCn

D QWaveform
Genera tor

COMn1
COMn0

0

1

D
AT

AB
U

S

FOCn

clkI/O

The general I/O port function is overridden by the Output Compare (OC2) from the waveform generator if
either of the COM21:0 bits are set. However, the OC2 pin direction (input or output) is still controlled by
the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin
(DDR_OC2) must be set as output before the OC2 value is visible on the pin. The port override function is
independent of the Waveform Generation mode.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

144

Bits 2:0 – CS0n: Clock Select [n = 2:0]
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 21-6. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on falling edge.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter
even if the pin is configured as an output. This feature allows software control of the counting.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

175

21.9.3. OCR0 – Output Compare Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The Output Compare Register contains an 8-bit value that is continuously compared with the counter
value (TCNT0). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OC0 pin.

Name:  OCR0
Offset:  0x23
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x43

Bit 7 6 5 4 3 2 1 0
 OCR0[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – OCR0[7:0]

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

177

The interconnection between Master and Slave CPUs with SPI is shown in the figure below. The system
consists of two shift registers, and a Master Clock generator. The SPI Master initiates the communication
cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data
to be sent in their respective Shift Registers, and the Master generates the required clock pulses on the
SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out – Slave In,
MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After each data packet,
the Master will synchronize the Slave by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be
handled by user software before communication can start. When this is done, writing a byte to the SPI
Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After
shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI
interrupt enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may
continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave
Select, SS line. The last incoming byte will be kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS
pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the
data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one
byte has been completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable
bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new
data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the
Buffer Register for later use.

Figure 22-2. SPI Master-slave Interconnection

SHIFT
ENABLE

Vcc

The system is single buffered in the transmit direction and double buffered in the receive direction. This
means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle
is completed. When receiving data, however, a received character must be read from the SPI Data
Register before the next character has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct
sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to the table below. For more details on automatic port overrides, refer to Alternate Port
Functions.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

181

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system.
Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven
low by peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the
SPI system interprets this as another master selecting the SPI as a slave and starting to send data to it.
To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI
becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the
interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that
SS is driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been
cleared by a slave select, it must be set by the user to re-enable SPI Master mode.

22.4. Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are determined
by control bits CPHA and CPOL. The SPI data transfer formats are shown in the figures in this section.
Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for
data signals to stabilize. This is clearly seen by summarizing Table 22-3 and Table 22-4, as done below:

Table 22-2. CPOL and CPHA Functionality

SPI Mode Conditions Leading Edge Trailing Edge

0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)

1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

Figure 22-3. SPI Transfer Format with CPHA = 0

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN
CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

184

23.2.1. AVR USART vs. AVR UART – Compatibility
The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.
• Baud Rate Generation.
• Transmitter Operation.
• Transmit Buffer Functionality.
• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some special
cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO
buffer. Therefore the UDR must only be read once for each incoming data! More important is the
fact that the Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in
the receive buffer. Therefore the status bits must always be read before the UDR Register is read.
Otherwise the error status will be lost since the buffer state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Block Diagram in previous section) if the
Buffer Registers are full, until a new start bit is detected. The USART is therefore more resistant to
Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

• CHR9 is changed to UCSZ2.
• OR is changed to DOR.

23.3. Clock Generation
The clock generation logic generates the base clock for the Transmitter and Receiver. The USART
supports four modes of clock operation: normal asynchronous, double speed asynchronous, Master
synchronous and Slave Synchronous mode. The UMSEL bit in USART Control and Status Register C
(UCSRC) selects between asynchronous and synchronous operation. Double speed (Asynchronous
mode only) is controlled by the U2X found in the UCSRA Register. When using Synchronous mode
(UMSEL = 1), the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock source
is internal (Master mode) or external (Slave mode). The XCK pin is only active when using Synchronous
mode.

Below is a block diagram of the clock generation logic.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

192

Figure 24-13. Data Transfer in Master Receiver Mode

Device 1
MASTER

RECEIVER

Device 2
SLA VE

TRANSMITTER
Device 3 Device n

SD A

SCL

........ R1 R2

VCC

A START condition is sent by writing to the TWI Control register (TWCR) a value of the type
TWCR=1x10x10x:

• TWCR.TWEN must be written to '1' to enable the 2-wire Serial Interface
• TWCR.TWSTA must be written to '1' to transmit a START condition
• TWCR.TWINT must be cleared by writing a '1' to it.

The TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and
the status code in TWSR will be 0x08 (see Status Code table below). In order to enter MR mode, SLA+R
must be transmitted. This is done by writing SLA+R to TWDR. Thereafter, the TWINT flag should be
cleared (by writing '1' to it) to continue the transfer. This is accomplished by writing the a value to TWCR
of the type TWCE=1x00x10x.

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is set again
and a number of status codes in TWSR are possible. Possible status codes in Master mode are 0x38,
0x40, or 0x48. The appropriate action to be taken for each of these status codes is detailed in the table
below. Received data can be read from the TWDR Register when the TWINT Flag is set high by
hardware. This scheme is repeated until the last byte has been received. After the last byte has been
received, the MR should inform the ST by sending a NACK after the last received data byte. The transfer
is ended by generating a STOP condition or a repeated START condition. A repeated START condition is
sent by writing to the TWI Control register (TWCR) a value of the type TWCR=1x10x10x again. A STOP
condition is generated by writing TWCR=1xx01x10x:

After a repeated START condition (status code 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables the Master
to switch between Slaves, Master Transmitter mode and Master Receiver mode without losing control
over the bus.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

235

Figure 24-18. Formats and States in the Slave Transmitter Mode

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the o wn
sla v e address and one or
more data b ytes

Last data b yte tr ansmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as sla v e

n

From master to sla v e

From slave to master

Any number of data b ytes
and their associated ac kno wledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Ser ial Bus. The
prescaler bits are z ero or mask ed to z ero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

24.6.6. Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see the table below.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not set. This
occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus error
occurs when a START or STOP condition occurs at an illegal position in the format frame. Examples of
such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit.
When a bus error occurs, TWINT is set. To recover from a bus error, the TWSTO Flag must set and
TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the not addressed Slave
mode and to clear the TWSTO Flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

Table 24-7. Miscellaneous States

Status
Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Application Software Response Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWI
NT

TWE
A

0xF8 No relevant state
information available;
TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP
condition is sent on the bus. In all cases, the bus
is released and TWSTO is cleared.

24.6.7. Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action. Consider
for example reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

244

Bit 4 – TWSTO: TWI STOP Condition
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire Serial Bus.
When the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In Slave
mode, setting the TWSTO bit can be used to recover from an error condition. This will not generate a
STOP condition, but the TWI returns to a well-defined unaddressed Slave mode and releases the SCL
and SDA lines to a high impedance state.

Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is low.
This flag is cleared by writing the TWDR Register when TWINT is high.

Bit 2 – TWEN: TWI Enable
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the
TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the slew-rate limiters
and spike filters. If this bit is written to zero, the TWI is switched off and all TWI transmissions are
terminated, regardless of any ongoing operation.

Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for
as long as the TWINT Flag is high.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

249

27.3. TAP – Test Access Port
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state machine.
• TCK: Test clock. JTAG operation is synchronous to TCK.
• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register

(Scan Chains).
• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the TAP
controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP input signals
are internally pulled high and the JTAG is enabled for Boundary-scan and programming. In this case, the
TAP output pin (TDO) is left floating in states where the JTAG TAP controller is not shifting data, and must
therefore be connected to a pull-up resistor or other hardware having pull-ups (for instance the TDI-input
of the next device in the scan chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is monitored by the
debugger to be able to detect External Reset sources. The debugger can also pull the RESET pin low to
reset the whole system, assuming only open collectors on the Reset line are used in the application.

Figure 27-1. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Ins truction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

A
N

A
LO

G
P

E
R

IP
H

E
R

IA
L

U
N

IT
S

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

A
na

lo
g

in
pu

ts
C

on
tro

l &
 C

lo
ck

 li
ne

s

DEVICE BOUNDARY

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

283

Figure 27-7. Additional Scan Signal for the Two-wire Interface

PUExn

OCxn

ODxn

TWIEN

IDxn

Slew-rate limited

SRC

Pxn

27.13.3. Scanning the RESET Pin
The RESET pin accepts 5V active low logic for standard Reset operation, and 12V active high logic for
High Voltage Parallel programming. An observe-only cell as shown in the figure below is inserted both for
the 5V Reset signal; RSTT, and the 12V Reset signal; RSTHV.

Figure 27-8. Observe-only Cell

0

1
D Q

From
previous

ce ll

ClockDR

ShiftDR

To
next
ce ll

From sys tem pin To sys tem logic

FF1

27.13.4. Scanning the Clock Pins
The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator,
External RC, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and
Ceramic Resonator.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

294

Figure 28-3. Addressing the Flash During SPM(1)

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE
PCMSB PAGEMSB

PROGRAM
COUNTER

Note: 
1. Fo the different variables used in the figure, see the table of the different variables used and the

Mapping to the Z-pointer in the boot loader parameters section.
2. PCPAGE and PCWORD are listed in table Number of Words in a Page and number of Pages in the

Flash in the Signal Names section.

Related Links
Signal Names on page 331
ATmega32A Boot Loader Parameters on page 323

28.8. Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with the data
stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled one
word at a time using SPM and the buffer can be filled either before the Page Erase command or between
a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase
• Fill temporary page buffer
• Perform a Page Erase
• Perform a Page Write

Alternative 2, fill the buffer after Page Erase
• Perform a Page Erase

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

317

Instruction TDI sequence TDO sequence Notes

2g. Write Flash Page 0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

xxxxxxx_oooooooo

low byte
high byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

350

6. Enter JTAG instruction PROG_COMMANDS.
7. Repeat steps 3 to 6 until all data have been read.

Related Links
Parallel Programming Characteristics on page 339

29.10.19. Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed. See Performing Chip Erase.

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM write using programming instruction 4a.
3. Load address high byte using programming instruction 4b.
4. Load address low byte using programming instruction 4c.
5. Load data using programming instructions 4d and 4e.
6. Repeat steps 4 and 5 for all data bytes in the page.
7. Write the data using programming instruction 4f.
8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM

Related Links
Parallel Programming Characteristics on page 339

29.10.20. Reading the EEPROM
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM read using programming instruction 5a.
3. Load address using programming instructions 5b and 5c.
4. Read data using programming instruction 5d.
5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM

29.10.21. Programming the Fuses
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse write using programming instruction 6a.
3. Load data high byte using programming instructions 6b. A bit value of “0” will program the

corresponding fuse, a “1” will unprogram the fuse.
4. Write high Fuse byte using programming instruction 6c.
5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

6. Load data low byte using programming instructions 6e. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.
8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

357

Table 30-4. External RC Oscillator, Typical Frequencies

R [kΩ](1) C [pF] f(2)

33 22 650kHz

10 22 2.0MHz

Note: 
1. R should be in the range 3kΩ - 100kΩ, and C should be at least 20pF. The C values given in the

table includes pin capacitance. This will vary with package type.
2. The frequency will vary with package type and board layout.

30.4. System and Reset Characteristics
Table 30-5. Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT Power-on Reset Threshold Voltage (rising)(1) 1.4 2.3 V

Power-on Reset Threshold Voltage (falling) 1.3 2.3 V

VRST RESET Pin Threshold Voltage 0.2 0.9 VCC

tRST Minimum pulse width on RESET Pin 1.5 μs

VBOT Brown-out Reset Threshold Voltage(2) BODLEVEL = 1 2.5 2.7 2.9 V

BODLEVEL = 0 3.6 4.0 4.2

tBOD Minimum low voltage period for Brown-out Detection BODLEVEL = 1 2 μs

BODLEVEL = 0 2 μs

VHYST Brown-out Detector hysteresis 50 mV

VBG Bandgap reference voltage 1.15 1.23 1.35 V

tBG Bandgap reference start-up time 40 70 μs

IBG Bandgap reference current consumption 10 μs

Note: 
1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling).
2. VBOT may be below nominal minimum operating voltage for some devices. For devices where this

is the case, the device is tested down to VCC = VBOT during the production test. This guarantees
that a Brown-out Reset will occur before VCC drops to a voltage where correct operation of the
microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 1 and
BODLEVEL = 0 for ATmega32A.

30.5. Two-wire Serial Interface Characteristics
The table below describes the requirements for devices connected to the Two-wire Serial Bus. The
ATmega32A Two-wire Serial Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 30-3.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

363

Figure 31-8. Idle Supply Current vs. Frequency (1 MHz - 16 MHz)
IDLE SUPPLY CURRENT vs . FREQUENCY

1 - 16 MHz

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Frequency (MHz)

I C
C

(m
A)

2.7V
3.3V

3.6V

4.0V

4.5V

5.0V

5.5V

Figure 31-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
IDLE SUPPLY CURRENT vs . VCC

INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

1

2

3

4

5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

(m
A)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

375

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register
triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

35.2. ATmega32A, rev. G to rev. I
• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take
longer than
expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before
the first
conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous
Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00
before writing
to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register
(TCNTx), or
asynchronous Output Compare Register (OCRx).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by
all-ones
during Update-DR.

Problem Fix / Workaround

– If ATmega32A is the only device in the scan chain, the problem is not visible.
– Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by

entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device
ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS
instruction to the ATmega32A while reading the Device ID Registers of preceding devices of
the boundary scan chain.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

410

