
Microchip Technology - ATMEGA32A-PN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega32a-pn

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega32a-pn-4408425
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

as an address pointer for look up tables in Flash Program memory. These added function registers are
the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a
register. Single register operations can also be executed in the ALU. After an arithmetic operation, the
Status Register is updated to reflect information about the result of the operation.

The Program flow is provided by conditional and unconditional jump and call instructions, able to directly
address the whole address space. Most AVR instructions have a single 16-bit word format. Every
Program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the Application
program section. Both sections have dedicated Lock Bits for write and read/write protection. The SPM
instruction that writes into the Application Flash memory section must reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack.
The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only
limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the
reset routine (before subroutines or interrupts are executed). The Stack Pointer SP is read/write
accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt
enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector
table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the
Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI,
and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations
following those of the Register File, 0x20 - 0x5F.

10.2. ALU – Arithmetic Logic Unit
The high-performance Atmel AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose registers or
between a register and an immediate are executed. The ALU operations are divided into three main
categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide
a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the
“Instruction Set” section for a detailed description.

10.3. Status Register
The Status Register contains information about the result of the most recently executed arithmetic
instruction. This information can be used for altering program flow in order to perform conditional
operations. Note that the Status Register is updated after all ALU operations, as specified in the
Instruction Set Reference. This will in many cases remove the need for using the dedicated compare
instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when
returning from an interrupt. This must be handled by software.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

22

12.3. Default Clock Source
The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is therefore
the Internal RC Oscillator with longest startup time. This default setting ensures that all users can make
their desired clock source setting using an In-System or Parallel Programmer.

12.4. Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for
use as an On-chip Oscillator, as shown in the figure below. Either a quartz crystal or a ceramic resonator
may be used. The CKOPT Fuse selects between two different Oscillator amplifier modes. When CKOPT
is programmed, the Oscillator output will oscillate a full rail-to-rail swing on the output. This mode is
suitable when operating in a very noisy environment or when the output from XTAL2 drives a second
clock buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the Oscillator has
a smaller output swing. This reduces power consumption considerably. This mode has a limited
frequency range and it cannot be used to drive other clock buffers.

For resonators, the maximum frequency is 8MHz with CKOPT unprogrammed and 16MHz with CKOPT
programmed. C1 and C2 should always be equal for both crystals and resonators. The optimal value of
the capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for use with
crystals are given in the next table. For ceramic resonators, the capacitor values given by the
manufacturer should be used.

Figure 12-2. Crystal Oscillator Connections

XTAL2

XTAL1

GND

C2

C1

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSEL3:1 as shown in the following table.

Table 12-3. Crystal Oscillator Operating Modes

CKOPT(1) CKSEL3:1 Frequency Range(MHz) Recommended Range for Capacitors C1 and C2
for Use with Crystals (pF)

1 101(2) 0.4 - 0.9 –

1 110 0.9 - 3.0 12 - 22

1 111 3.0 - 8.0 12 - 22

0 101, 110, 111 1.0 -16.0 12 - 22

Note: 
1. When CKOPT is programmed (0), the oscillator output will be a full rail-to-rail swing on the output.
2. This option should not be used with crystals, only with ceramic resonators.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

41

C Code Example

void Move_interrupts(void)
{
 /* Enable change of Interrupt Vectors */
 GICR = (1<<IVCE);
 /* Move interrupts to boot Flash section */
 GICR = (1<<IVSEL);
}

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

68

16. External Interrupts
The External Interrupts are triggered by the INT0, INT1, and INT2 pins. Observe that, if enabled, the
interrupts will trigger even if the INT0:2 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The external interrupts can be triggered by a falling or rising edge or a
low level (INT2 is only an edge triggered interrupt). This is set up as indicated in the specification for the
MCU Control Register – MCUCR – and MCU Control and Status Register – MCUCSR. When the external
interrupt is enabled and is configured as level triggered (only INT0/INT1), the interrupt will trigger as long
as the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 and INT1 requires
the presence of an I/O clock, described in “Clock Systems and their Distribution” on page 25. Low level
interrupts on INT0/INT1 and the edge interrupt on INT2 are detected asynchronously. This implies that
these interrupts can be used for waking the part also from sleep modes other than Idle mode. The I/O
clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level
must be held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The
changed level is sampled twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator
is 1 μs (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscillator is voltage dependent as
shown in “Electrical Characteristics” on page 296. The MCU will wake up if the input has the required
level during this sampling or if it is held until the end of the start-up time. The start-up time is defined by
the SUT fuses as described in “System Clock and Clock Options” on page 25. If the level is sampled
twice by the Watchdog Oscillator clock but disappears before the end of the startup time, the MCU will still
wake up, but no interrupt will be generated. The required level must be held long enough for the MCU to
complete the wake up to trigger the level interrupt.

Related Links
Clock Systems and their Distribution on page 39
Electrical Characteristics on page 359
System Clock and Clock Options on page 39

16.1. Register Description

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

69

Note:  1. For the assembly program, two temporary registers are used to minimize the time from pull-ups
are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and
redefining bits 0 and 1 as strong high drivers.

17.2.3. Digital Input Enable and Sleep Modes
As shown in figure Figure 17-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-
down mode, Power-save mode, and Standby mode to avoid high power consumption if some input
signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate
functions as described in Alternate Port Functions.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as “Interrupt
on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the
corresponding External Interrupt Flag will be set when resuming from the above mentioned sleep modes,
as the clamping in these sleep modes produces the requested logic change.

17.2.4. Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though
most of the digital inputs are disabled in the deep sleep modes as described above, floating inputs should
be avoided to reduce current consumption in all other modes where the digital inputs are enabled (Reset,
Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this
case, the pull-up will be disabled during reset. If low power consumption during reset is important, it is
recommended to use an external pull-up or pull-down. Connecting unused pins directly to VCC or GND is
not recommended, since this may cause excessive currents if the pin is accidentally configured as an
output.

17.3. Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. The following figure
shows how the port pin control signals from the simplified Figure 17-2 can be overridden by alternate
functions. The overriding signals may not be present in all port pins, but the figure serves as a generic
description applicable to all port pins in the AVR microcontroller family.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

78

Signal Name Full Name Description

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the DDOV
signal. If this signal is cleared, the Output driver is enabled by the DDxn
Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn Register bit.

PVOE Port Value Override
Enable

If this signal is set and the Output Driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the Output
Driver is enabled, the port Value is controlled by the PORTxn Register
bit.

PVOV Port Value Override
Value

If PVOE is set, the port value is set to PVOV, regardless of the setting of
the PORTxn Register bit.

DIEOE Digital Input Enable
Override Enable

If this bit is set, the Digital Input Enable is controlled by the DIEOV
signal. If this signal is cleared, the Digital Input Enable is determined by
MCU state (Normal mode, sleep mode).

DIEOV Digital Input Enable
Override Value

If DIEOE is set, the Digital Input is enabled/disabled when DIEOV is set/
cleared, regardless of the MCU state (Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the figure, the signal is
connected to the output of the Schmitt Trigger but before the
synchronizer. Unless the Digital Input is used as a clock source, the
module with the alternate function will use its own synchronizer.

AIO Analog Input/Output This is the Analog Input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding
signals to the alternate function. Refer to the alternate function description for further details.

17.3.1. Alternate Functions of Port A
Port A has an alternate function as analog input for the ADC as shown in the table below. If some Port A
pins are configured as outputs, it is essential that these do not switch when a conversion is in progress.
This might corrupt the result of the conversion.

Table 17-3. Port A Pins Alternate Functions

Port Pin Alternate Functions

PA7 ADC7 (ADC input channel 7)

PA6 ADC6 (ADC input channel 6)

PA5 ADC5 (ADC input channel 5)

PA4 ADC4 (ADC input channel 4)

PA3 ADC3 (ADC input channel 3)

PA2 ADC2 (ADC input channel 2)

PA1 ADC1 (ADC input channel 1)

PA0 ADC0 (ADC input channel 0)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

80

19.7.2. Compare Match Blocking by TCNTn Write
All CPU writes to the TCNTn Register will block any Compare Match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the same value as
TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

19.7.3. Using the Output Compare Unit
Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle,
there are risks involved when changing TCNTn when using any of the Output Compare channels,
independent of whether the Timer/Counter is running or not. If the value written to TCNTn equals the
OCRnx value, the Compare Match will be missed, resulting in incorrect waveform generation. Do not
write the TCNTn equal to TOP in PWM modes with variable TOP values. The Compare Match for the
TOP will be ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OCnx value is to use the Force Output Compare (FOCnx) strobe
bits in Normal mode. The OCnx Register keeps its value even when changing between Waveform
Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the
COMnx1:0 bits will take effect immediately.

19.8. Compare Match Output Unit
The Compare Output mode (COMnx1:0) bits have two functions. The waveform generator uses the
COMnx1:0 bits for defining the Output Compare (OCnx) state at the next Compare Match. Secondly the
COMnx1:0 bits control the OCnx pin output source. The figure below shows a simplified schematic of the
logic affected by the COMnx1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are
shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected
by the COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the internal OCnx
Register, not the OCnx pin. If a System Reset occur, the OCnx Register is reset to “0”.

Figure 19-5. Compare Match Output Unit, Schematic

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D QWaveform
Generator

COMnx[1]
COMnx[0]

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

115

19.11.3. TCNT1L – Timer/Counter1 Low byte
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  TCNT1L
Offset:  0x2C
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x4C

Bit 7 6 5 4 3 2 1 0
 TCNT1L[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – TCNT1L[7:0]: Timer/Counter 1 Low byte
The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both
for read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high
and low bytes are read and written simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. Refer to Accessing 16-bit Registers for details.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match
between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all
compare units.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

130

small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2 and
TCNT2.

Figure 20-6. Fast PWM Mode, Timing Diagram

TCNTn

OCRn Update
and
TOVn Inte rrupt Flag Se t

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Inte rrupt Flag Se t

4 5 6 7

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM21:0 to 3. The actual OC2 value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2 Register at
the Compare Match between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:�OCnPWM = �clk_I/O� ⋅ 256
The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to
toggle its logical level on each Compare Match (COM21:0 = 1). The waveform generated will have a
maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

20.7.4. Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

147

Figure 21-6. Fast PWM Mode, Timing Diagram

TCNTn

OCRn Update
and
TOVn Inte rrupt Flag Se t

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Inte rrupt Flag Se t

4 5 6 7

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0 pin. Setting the
COM01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM01:0 to 3 (see Table 21-4). The actual OC0 value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing)
the OC0 Register at the Compare Match between OCR0 and TCNT0, and clearing (or setting) the OC0
Register at the timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:�OCnPWM = �clk_I/O� ⋅ 256
The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256 or 1024).

The extreme values for the OCR0 Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR0 is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCR0 equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COM01:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC0 to
toggle its logical level on each Compare Match (COM01:0 = 1). The waveform generated will have a
maximum frequency of foc0 = fclk_I/O/2 when OCR0 is set to zero. This feature is similar to the OC0 toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

21.7.4. Phase Correct PWM Mode
The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC0) is cleared on the Compare Match between TCNT0 and OCR0 while
upcounting, and set on the Compare Match while downcounting. In inverting Output Compare mode, the

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

169

Assembly Code Example(1)

SPI_SlaveInit:
 ; Set MISO output, all others input
 ldi r17,(1<<DD_MISO)
 out DDR_SPI,r17
 ; Enable SPI
 ldi r17,(1<<SPE)
 out SPCR,r17
 ret
SPI_SlaveReceive:
 ; Wait for reception complete
 sbis SPSR,SPIF
 rjmp SPI_SlaveReceive
 ; Read received data and return
 in r16,SPDR
 ret

C Code Example(1)

void SPI_SlaveInit(void)
{
 /* Set MISO output, all others input */
 DDR_SPI = (1<<DD_MISO);
 /* Enable SPI */
 SPCR = (1<<SPE);
}
char SPI_SlaveReceive(void)
{
 /* Wait for reception complete */
 while(!(SPSR & (1<<SPIF)))
 ;
 /* Return Data Register */
 return SPDR;
}

Note:  1. See About Code Examples.

Related Links
Pin Configurations on page 13
Alternate Functions of Port B on page 81
Alternate Port Functions on page 78
About Code Examples on page 19

22.3. SS Pin Functionality

22.3.1. Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is held low,
the SPI is activated, and MISO becomes an output if configured so by the user. All other pins are inputs.
When SS is driven high, all pins are inputs, and the SPI is passive, which means that it will not receive
incoming data. The SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the
master clock generator. When the SS pin is driven high, the SPI slave will immediately reset the send and
receive logic, and drop any partially received data in the Shift Register.

22.3.2. Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of
the SS pin.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

183

Table 23-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud
Rate(1)

Equation for Calculating UBRR
Value

Asynchronous Normal
mode (U2X = 0) BAUD = �OSC16 ���� + 1 ���� = �OSC16BAUD − 1
Asynchronous Double
Speed mode (U2X = 1) BAUD = �OSC8 ���� + 1 ���� = �OSC8BAUD − 1
Synchronous Master mode BAUD = �OSC2 ����+1 ���� = �OSC2BAUD − 1

Note:  1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps).

fOSC System oscillator clock frequency.

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095).

Some examples of UBRR values for some system clock frequencies are found in Table 23-9.

23.3.2. Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer
rate for asynchronous communication. Note however that the Receiver will in this case only use half the
number of samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more
accurate baud rate setting and system clock are required when this mode is used.

For the Transmitter, there are no downsides.

23.3.3. External Clock
External clocking is used by the synchronous slave modes of operation. The description in this section
refers to Figure 23-2.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of
meta-stability. The output from the synchronization register must then pass through an edge detector
before it can be used by the Transmitter and Receiver. This process introduces a two CPU clock period
delay and therefore the maximum external XCK clock frequency is limited by the following equation:�XCK < �OSC4
The value of fosc depends on the stability of the system clock source. It is therefore recommended to add
some margin to avoid possible loss of data due to frequency variations.

23.3.4. Synchronous Clock Operation
When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or
clock output (Master). The dependency between the clock edges and data sampling or data change is the
same. The basic principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the
edge the data output (TxD) is changed.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

194

23.11.3. UCSRB – USART Control and Status Register B
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  UCSRB
Offset:  0x0A
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x2A

Bit 7 6 5 4 3 2 1 0
 RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

Access R/W R/W R/W R/W R/W R/W R R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 – RXCIE: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete interrupt will be
generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the RXC bit in UCSRA is set.

Bit 6 – TXCIE: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete interrupt will be
generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the TXC bit in UCSRA is set.

Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty interrupt will be
generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the UDRE bit in UCSRA is set.

Bit 4 – RXEN: Receiver Enable
Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for
the RxD pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR
and PE Flags.

Bit 3 – TXEN: Transmitter Enable
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation
for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become
effective until ongoing and pending transmissions are completed (i.e., when the Transmit Shift Register
and Transmit Buffer Register do not contain data to be transmitted). When disabled, the Transmitter will
no longer override the TxD port.

Bit 2 – UCSZ2: Character Size
The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size)
in a frame the Receiver and Transmitter use.

Bit 1 – RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits.
Must be read before reading the low bits from UDR.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

212

Figure 26-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample and Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

Figure 26-5. ADC Timing Diagram, Single Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample and Hold
MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

Figure 26-6. ADC Timing Diagram, Auto Triggered Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

262

Figure 27-2. TAP Controller State Diagram

Tes t-Logic-Rese t

Run-Tes t/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update -IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

27.4. TAP Controller
The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-scan
circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions depicted in Figure
27-2 depend on the signal present on TMS (shown adjacent to each state transition) at the time of the
rising edge at TCK. The initial state after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the 4 bits of the JTAG instructions into
the JTAG instruction register from the TDI input at the rising edge of TCK. The TMS input must be

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

284

The figure below shows how each Oscillator with external connection is supported in the scan chain. The
Enable signal is supported with a general boundary-scan cell, while the Oscillator/Clock output is
attached to an observe-only cell. In addition to the main clock, the Timer Oscillator is scanned in the same
way. The output from the internal RC Oscillator is not scanned, as this Oscillator does not have external
connections.

Figure 27-9. Boundary-scan Cells for Oscillators and Clock Options

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
next
ce ll

To Sys tem Logic

FF10

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

From Digita l Logic

XTAL1/TOSC1 XTAL2/TOSC2

Oscilla tor

ENABLE OUTPUT

The following table summaries the scan registers for the external clock pin XTAL1, oscillators with XTAL1/
XTAL2 connections as well as 32kHz Timer Oscillator.

Table 27-3. Scan Signals for the Oscillators(1)(2)(3)

Enable signal Scanned Clock Line Clock Option Scanned Clock Line when not
Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK External Crystal
External Ceramic Resonator

0

RCOSCEN RCCK External RC 1

OSC32EN OSC32CK Low Freq. External Crystal 0

TOSKON TOSCK 32kHz Timer Oscillator 0

Note: 
1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between the

Internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is preferred.
3. The clock configuration is programmed by fuses. As a fuse does not change run-time, the clock

configuration is considered fixed for a given application. The user is advised to scan the same clock
option as to be used in the final system. The enable signals are supported in the scan chain
because the system logic can disable clock options in sleep modes, thereby disconnecting the
Oscillator pins from the scan path if not provided. The INTCAP fuses are not supported in the scan-

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

295

28.8.12. Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART

Write_page:

 ; Page Erase

 ldi spmcrval, (1<<PGERS) | (1<<SPMEN)

 rcall Do_spm

 ; re-enable the RWW section

 ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

 rcall Do_spm

 ; transfer data from RAM to Flash page buffer

 ldi looplo, low(PAGESIZEB) ;init loop variable

 ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:

 ld r0, Y+

 ld r1, Y+

 ldi spmcrval, (1<<SPMEN)

 rcall Do_spm

 adiw ZH:ZL, 2

 sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

 brne Wrloop

 ; execute Page Write

 subi ZL, low(PAGESIZEB) ;restore pointer

 sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256

 ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)

 rcall Do_spm

 ; re-enable the RWW section

 ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

321

 sbic EECR, EEWE

 rjmp Wait_ee

 ; SPM timed sequence

 out SPMCR, spmcrval

 spm

 ; restore SREG (to enable interrupts if originally enabled)

 out SREG, temp2

 ret

28.8.13. ATmega32A Boot Loader Parameters
In the following tables, the parameters used in the description of the self programming are given.

Table 28-6. Boot Size Configuration, ATmega32A

BOOTSZ1 BOOTSZ0 Boot
Size

Pages Application
Flash Section

Boot
Loader
Flash
Section

End
Application
Section

Boot Reset
Address
(Start Boot
Loader
Section)

1 1 256
words

4 0x0000 -
0x3EFF

0x3F00 -
0x3FFF

0xEFF 0x3F00

1 0 512
words

8 0x0000 -
0x3DFF

0x3E00 -
0x3FFF

0x3DFF 0x3E00

0 1 1024
words

16 0x0000 -
0x3BFF

0x3C00 -
0x3FFF

0x3BFF 0x3C00

0 0 2048
words

32 0x0000 -
0x37FF

0x3800 -
0x3FFF

0x37FF 0x3800

Note:  The different BOOTSZ Fuse configurations are shown in Figure 28-2.

Table 28-7. Read-While-Write Limit, ATmega32A

Section Pages Address

Read-While-Write section (RWW) 224 0x0000 - 0x37FF

No Read-While-Write section (NRWW) 32 0x3800 - 0x3FFF

Note:  For details about these two section, see NRWW – No Read-While-Write Section and RWW –
Read-While-Write Section.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

323

Register is selected as Data Register. Note that the reset will be active as long as there is a logic 'one' in
the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

29.10.3. PROG_ENABLE (0x4)
The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit
Programming Enable Register is selected as data register. The active states are the following:

• Shift-DR: the programming enable signature is shifted into the data register.
• Update-DR: the programming enable signature is compared to the correct value, and Programming

mode is entered if the signature is valid.

29.10.4. PROG_COMMANDS (0x5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-
bit Programming Command Register is selected as data register. The active states are the following:

• Capture-DR: the result of the previous command is loaded into the data register.
• Shift-DR: the data register is shifted by the TCK input, shifting out the result of the previous

command and shifting in the new command.
• Update-DR: the programming command is applied to the Flash inputs.
• Run-Test/Idle: one clock cycle is generated, executing the applied command.

29.10.5. PROG_PAGELOAD (0x6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. The
1024-bit Virtual Flash Page Load Register is selected as data register. This is a virtual scan chain with
length equal to the number of bits in one Flash page. Internally the Shift Register is 8-bit. Unlike most
JTAG instructions, the Update-DR state is not used to transfer data from the Shift Register. The data are
automatically transferred to the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

• Shift-DR: Flash page data are shifted in from TDI by the TCK input, and automatically loaded into
the Flash page one byte at a time.

Note:  1. The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first device
in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise programming
algorithm must be used.

29.10.6. PROG_PAGEREAD (0x7)
The AVR specific public JTAG instruction to read one full Flash data page via the JTAG port. The 1032-bit
Virtual Flash Page Read Register is selected as data register. This is a virtual scan chain with length
equal to the number of bits in one Flash page plus 8. Internally the Shift Register is 8-bit. Unlike most
JTAG instructions, the Capture-DR state is not used to transfer data to the Shift Register. The data are
automatically transferred from the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

• Shift-DR: Flash data are automatically read one byte at a time and shifted out on TDO by the TCK
input. The TDI input is ignored.

Note:  1. The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first device
in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise programming
algorithm must be used.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

347

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.
3. Load address high byte using programming instruction 2b.
4. Load address low byte using programming instruction 2c.
5. Load data using programming instructions 2d, 2e and 2f.
6. Repeat steps 4 and 5 for all instruction words in the page.
7. Write the page using programming instruction 2g.
8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.
3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to Table 29-10)

is used to address within one page and must be written as 0.
4. Enter JTAG instruction PROG_PAGELOAD.
5. Load the entire page by shifting in all instruction words in the page, starting with the LSB of the first

instruction in the page and ending with the MSB of the last instruction in the page.
6. Enter JTAG instruction PROG_COMMANDS.
7. Write the page using programming instruction 2g.
8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to table

Parallel Programming Characteristics, VCC = 5V ±10% in chapter Parallel Programming
Characteristics).

9. Repeat steps 3 to 8 until all data have been programmed.

Related Links
Parallel Programming Characteristics on page 339

29.10.18. Reading the Flash
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load address using programming instructions 3b and 3c.
4. Read data using programming instruction 3d.
5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to table

Command Byte Bit Coding in section Parallel Programming Parameters, Pin Mapping, and
Commands) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.
5. Read the entire page by shifting out all instruction words in the page, starting with the LSB of the

first instruction in the page and ending with the MSB of the last instruction in the page. Remember
that the first 8 bits shifted out should be ignored.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

356

