

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkl26z128vmc4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Rati	ngs	
	1.1	Therm	al handling ratings4
	1.2	Moistu	re handling ratings4
	1.3	ESD h	andling ratings4
	1.4	Voltag	e and current operating ratings4
2	Ger	neral	
	2.1	AC ele	ectrical characteristics5
	2.2	Nonsw	vitching electrical specifications6
		2.2.1	Voltage and current operating requirements6
		2.2.2	LVD and POR operating requirements
		2.2.3	Voltage and current operating behaviors7
		2.2.4	Power mode transition operating behaviors8
		2.2.5	Power consumption operating behaviors9
		2.2.6	EMC radiated emissions operating behaviors 15
		2.2.7	Designing with radiated emissions in mind 16
		2.2.8	Capacitance attributes16
	2.3	Switch	ing specifications16
		2.3.1	Device clock specifications16
		2.3.2	General switching specifications17
	2.4	Therm	al specifications17
		2.4.1	Thermal operating requirements17
		2.4.2	Thermal attributes17
3	Peri	pheral	operating requirements and behaviors18
	3.1	Core n	nodules
		3.1.1	SWD electricals18
	3.2	Syster	n modules20
	3.3	Clock	modules
		3.3.1	MCG specifications20
		3.3.2	Oscillator electrical specifications22
	3.4	Memo	ries and memory interfaces24
		3.4.1	Flash electrical specifications24
	3.5	Securi	ty and integrity modules26
	3.6	Analog	g26
		3.6.1	ADC electrical specifications26
		3.6.2	CMP and 6-bit DAC electrical specifications31

		2.6.2 12 bit DAC electrical characteristics	,
	27	Timore 26	2
	0.7	Communication interfaces	2
	3.0	2.9.1 USP electrical enceifications	2
		3.0.1 USB electrical specifications	,
		3.8.2 USB VREG electrical specifications	<u>_</u>
		3.8.3 SPI switching specifications	<u>_</u>
		3.8.4 Inter-Integrated Circuit Interface (I2C) timing42	2
		3.8.5 UARI	3
		3.8.6 I2S/SAI switching specifications	3
	3.9	Human-machine interfaces (HMI)47	7
		3.9.1 TSI electrical specifications47	7
4	Dim	ensions	3
	4.1	Obtaining package dimensions48	3
5	Pino		3
	5.1	KL26 Signal Multiplexing and Pin Assignments48	3
	5.2	KL26 pinouts	2
6	Ord	ering parts56	3
	6.1	Determining valid orderable parts56	3
7	Par	t identification	3
	7.1	Description	3
	7.2	Format	7
	7.3	Fields	7
	7.4	Example	7
8	Teri	minology and guidelines58	3
	8.1	Definition: Operating requirement	3
	8.2	Definition: Operating behavior	3
	8.3	Definition: Attribute	3
	8.4	Definition: Rating)
	8.5	Result of exceeding a rating	9
	8.6	Relationship between ratings and operating	
		requirements	9
	8.7	Guidelines for ratings and operating requirements60)
	8.8	Definition: Typical value)
	8.9	Typical value conditions	
9	Rev	ision history 62	,
<u> </u>		02	۰.

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
VIL	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

- All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} greater than V_{IO_MIN} (= V_{SS}-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (V_{IO_MIN} V_{IN})/II_{ICIO}I.
- 2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—

Table continues on the next page ...

Symbol	Description		Тур.	Max	Unit	Note
	Run mode current - 48 MHz core / 24	at 25 °C	6.9	7.1	mA	
	MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	at 125 °C	7.3	7.6	mA	
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	2.9	3.5	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	2.2	2.8	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V		1.6	2.1	mA	3
I _{DD_VLPRCO} _CM	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V		798		μΑ	5
IDD_VLPRCO	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V		167	336	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	192	354	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	257	431	μA	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	112	286	μA	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	306	328	μA	
		at 50 °C	322	349	μA	
		at 70 °C	348	382	μA	
		at 85 °C	384	433	μA	
		at 105 °C	481	578	μA	
I _{DD_VLPS}	Very-low-power stop mode current at	at 25 °C	2.71	5.03	μA	
	5.0 V	at 50 °C	7.05	11.94	μA	
		at 70 °C	15.80	26.87	μA	

Table 9. Power consumption operating behaviors (continued)

Table continues on the next page...

Figure 4. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	12	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	7	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	4	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	М	—	2,3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

Peripheral operating requirements and behaviors

- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
 register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	—	52	452	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

Table 21. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					—
t _{rd1blk128k}	• 128 KB program flash	_	—	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	• 128 KB program flash	_	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	—	1.8	ms	_
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	—	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—		30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

Peripheral operating requirements and behaviors

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes			
Program Flash									
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	—			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	—			
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2			

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_j \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

3.6.1.1	16-bit ADC operat	ing conditions
	Table 25.	16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 * VREFH	V	—
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	—
	capacitance	 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	—
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
fadck	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion rate	 ≤ 13-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	5
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	Ksps	5

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Peripheral operating requirements and behaviors

3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	—	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	—	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	—	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000		—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
VOFFSET	Offset error	—	±0.4	±0.8	%FSR	5
E _G	Gain error	—	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	• Low power (SP _{LP})	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	—		
	 Low power (SP_{LP}) 	40	_	—		

1. Settling within ± 1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

34

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	—
4	t _{Lag}	Enable lag time	1	_	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	—
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output	1			

Table 34. SPI slave mode timing on slew rate enabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

Figure 18. Timing definition for fast and standard mode devices on the I²C bus

3.8.5 UART

See General switching specifications.

3.8.6 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	75	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Table 38. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Figure 21. I2S/SAI timing — master modes

Table 39.I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250		ns

Table continues on the next page...

Pinout

121 BGA	100 LQFP	64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
D5	90	_	_	PTC16	DISABLED		PTC16						
C4	91	_	_	PTC17	DISABLED		PTC17						
B4	92	_	_	PTC18	DISABLED		PTC18						
D4	93	C3	57	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0			
D3	94	A4	58	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1			
C3	95	C2	59	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO		
B3	96	B3	60	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI		
A3	97	A3	61	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4			
A2	98	C1	62	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5			
B2	99	B2	63	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	UART0_RX		SPI1_MISO		
A1	100	A2	64	PTD7	DISABLED		PTD7	SPI1_MISO	UART0_TX		SPI1_MOSI		
A11	86	C5	_	NC	NC	NC							
_	87	_	_	NC	NC	NC							
-	88	_	_	NC	NC	NC							
-	89	—	—	NC	NC	NC							
J3	-	-	—	NC	NC	NC							
H3	—	—	—	NC	NC	NC							
K4	—	—	—	NC	NC	NC							
L7	—	_	_	NC	NC	NC							
J9	—	_	_	NC	NC	NC							
J4	—	—	—	NC	NC	NC							
H11	-	_	_	NC	NC	NC							
F11	—	_	_	NC	NC	NC							
A5	-	-	-	NC	NC	NC							
B5	-	_	_	NC	NC	NC							
A4	—	_	_	NC	NC	NC							
B1	—	-	_	NC	NC	NC							
C2	-	_	_	NC	NC	NC							
C1	-	-	-	NC	NC	NC							
D2	-	-	-	NC	NC	NC							
D1	-	-	-	NC	NC	NC							
E1	-	_	_	NC	NC	NC							

KL26 pinouts 5.2

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, ssee KL26 Signal Multiplexing and Pin Assignments.

	1	2	3	4	5	6	7	8	9	10	11	
A	PTD7	PTD5	PTD4/ LLWU_P14	NC	NC	PTC13	PTC8	PTC4/ LLWU_P8	PTC21	PTC20	NC	А
в	NC	PTD6/ LLWU_P15	PTD3	PTC18	NC	PTC12	PTC7	PTC3/ LLWU_P7	PTC0	PTB16	PTC22	в
с	NC	NC	PTD2	PTC17	PTC11	PTC10	PTC6/ LLWU_P10	PTC2	PTB19	PTB11	PTC23	с
D	NC	NC	PTD1	PTD0	PTC16	PTC9	PTC5/ LLWU_P9	PTC1/ LLWU_P6/ RTC_CLKIN	PTB18	PTB10	PTB8	D
E	NC	PTE2	PTE1	PTE0	VDD	VDD	VDD	PTB23	PTB17	PTB9	PTB7	E
F	USB0_DP	USB0_DM	PTE6	PTE3	VDDA	VSSA	VSS	PTB22	PTB21	PTB20	NC	F
G	VOUT33	VREGIN	VSS	PTE5	VREFH	VREFL	VSS	PTB3	PTB2	PTB1	PTB0/ LLWU_P5	G
н	PTE16	PTE17	NC	PTA7	PTE24	PTE26	PTE4	PTA1	PTA3	PTA17	NC	н
J	PTE18	PTE19	NC	NC	PTE25	PTA0	PTA2	PTA4	NC	PTA16	PTA20	J
к	PTE20	PTE21	PTA6	NC	PTE30	VDD	PTA5	PTA12	PTA14	VSS	PTA19	к
L	PTE22	PTE23	PTE29	PTE31	VSS	VSS	NC	PTA13	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	

Figure 23. KL26 121-pin BGA pinout diagram

NP

Pinout

Figure 24. KL26 100-pin LQFP pinout diagram

Figure 25. KL26 64-pin LQFP pinout diagram

	1	2	3	4	5	6	7	8	
А	PTE0	PTD7	PTD4 /LLWU_P14	PTD1	PTC11	PTC8	PTC6 /LLWU_P10	PTC5 /LLWU_P9	A
в	PTE1	PTD6 /LLWU_P15	PTD3	PTC10	PTC9	PTC7	PTC2	PTC4 /LLWU_P8	в
с	PTD5	PTD2	PTD0	VSS	NC	PTC1 /LLWU_P6 /RTC _CLKIN	PTB19	PTC3 /LLWU_P7	с
D	USB0_DM	VREGIN	PTA0	PTA1	PTA3	PTB18	PTB17	PTC0	D
Е	USB0_DP	VOUT33	VSS	VDD	PTA2	PTB16	PTB2	PTB3	Е
F	PTE21	PTE23	VSSA	VDDA	PTA5	PTB1	PTB0 /LLWU_P5	PTA20	F
G	PTE20	PTE22	VREFL	VREFH	PTA4	PTA13	VDD	PTA19	G
н	PTE29	PTE30	PTE31	PTE24	PTE25	PTA12	VSS	PTA18	н
	1	2	3	4	5	6	7	8	

Figure 26. KL26 64-pin MAPBGA pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL26 and MKL26

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL26
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 128 = 128 KB 256 = 256 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm)
cc	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	 R = Tape and reel

 Table 41. Part number fields descriptions

7.4 Example

This is an example part number:

MKL26Z256VLH4

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

